Non-perfect rings and a theorem of Eklof and Shelah
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 27-32
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings.
We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings.
Classification :
03E55, 16A50, 16A51, 16D40, 16L30
Keywords: perfect ring; Ext; uniformization
Keywords: perfect ring; Ext; uniformization
@article{CMUC_1991_32_1_a3,
author = {Trlifaj, Jan},
title = {Non-perfect rings and a theorem of {Eklof} and {Shelah}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {27--32},
year = {1991},
volume = {32},
number = {1},
mrnumber = {1118286},
zbl = {0742.16001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a3/}
}
Trlifaj, Jan. Non-perfect rings and a theorem of Eklof and Shelah. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a3/
[1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules. Springer, New York 1974. | MR | Zbl
[2] Eklof P.C.: Set Theoretic Methods in Homological Algebra and Abelian Groups. Montreal Univ. Press, Montreal 1980. | MR | Zbl
[3] Eklof P.C., Shelah S.: On Whitehead modules. preprint 1990. | MR | Zbl
[4] Shelah S.: Diamonds, uniformization. J. Symbolic Logic 49 (1984), 1022-1033. | MR | Zbl
[5] Trlifaj J.: Von Neumann regular rings and the Whitehead property of modules. Comment. Math. Univ. Carolinae 31 (1990), 621-625. | MR | Zbl
[6] Trlifaj J.: Associative Rings and the Whitehead Property of Modules. R. Fischer, Munich 1990. | MR | Zbl