Non-perfect rings and a theorem of Eklof and Shelah
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 27-32 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings.
We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings.
Classification : 03E55, 16A50, 16A51, 16D40, 16L30
Keywords: perfect ring; Ext; uniformization
@article{CMUC_1991_32_1_a3,
     author = {Trlifaj, Jan},
     title = {Non-perfect rings and a theorem of {Eklof} and {Shelah}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {27--32},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118286},
     zbl = {0742.16001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a3/}
}
TY  - JOUR
AU  - Trlifaj, Jan
TI  - Non-perfect rings and a theorem of Eklof and Shelah
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 27
EP  - 32
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a3/
LA  - en
ID  - CMUC_1991_32_1_a3
ER  - 
%0 Journal Article
%A Trlifaj, Jan
%T Non-perfect rings and a theorem of Eklof and Shelah
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 27-32
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a3/
%G en
%F CMUC_1991_32_1_a3
Trlifaj, Jan. Non-perfect rings and a theorem of Eklof and Shelah. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a3/

[1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules. Springer, New York 1974. | MR | Zbl

[2] Eklof P.C.: Set Theoretic Methods in Homological Algebra and Abelian Groups. Montreal Univ. Press, Montreal 1980. | MR | Zbl

[3] Eklof P.C., Shelah S.: On Whitehead modules. preprint 1990. | MR | Zbl

[4] Shelah S.: Diamonds, uniformization. J. Symbolic Logic 49 (1984), 1022-1033. | MR | Zbl

[5] Trlifaj J.: Von Neumann regular rings and the Whitehead property of modules. Comment. Math. Univ. Carolinae 31 (1990), 621-625. | MR | Zbl

[6] Trlifaj J.: Associative Rings and the Whitehead Property of Modules. R. Fischer, Munich 1990. | MR | Zbl