Keywords: orthomodular lattice; quantum logic; concrete logic; set representation; automorphism group of a logic; state space
@article{CMUC_1991_32_1_a2,
author = {Navara, Mirko and Tkadlec, Josef},
title = {Automorphisms of concrete logics},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {15--25},
year = {1991},
volume = {32},
number = {1},
mrnumber = {1118285},
zbl = {0742.06008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a2/}
}
Navara, Mirko; Tkadlec, Josef. Automorphisms of concrete logics. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a2/
[1] Groot J. de, McDowell R.H.: Autohomeomorphism groups of 0-dimensional spaces. Compositio Math. 15 (1963), 203-209. | MR
[2] Gudder S.P.: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979. | MR | Zbl
[3] Iturrioz L.: A representation theory for orthomodular lattices by means of closure spaces. Acta Math. Hung. 47 (1986), 145-151. | MR | Zbl
[4] Kallus M., Trnková V.: Symmetries and retracts of quantum logics. Int. J. Theor. Phys. 26 (1987), 1-9. | MR
[5] Kalmbach G.: Orthomodular Lattices. Academic Press, London, 1983. | MR | Zbl
[6] Kalmbach G.: Automorphism groups of orthomodular lattices. Bull. Austral. Math. Soc. 29 (1984), 309-313. | MR | Zbl
[7] Navara M.: The independence of automorphism groups, centres and state spaces in quantum logics. to appear.
[8] Navara M.: An alternative proof of Shultz's theorem. to appear.
[9] Navara M., Pták P.: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105-111. | MR
[10] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets. to appear in Math. Nachrichten. | MR | Zbl
[11] Pták P.: Logics with given centres and state spaces. Proc. Amer. Math. Soc. 88 (1983), 106-109. | MR
[12] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer, 1991 (to appear). | MR
[13] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland, Amsterdam, 1980 and Academia, Praha, 1980. | MR
[14] Sikorski R.: Boolean Algebras. Springer-Verlag, Berlin, 1969. | MR | Zbl
[15] Tkadlec J.: Set representations of orthoposets. Proc. 2-nd Winter School on Measure Theory (Liptovský Ján, 1990), Slovak Academy of Sciences, Bratislava, 1990. | MR | Zbl
[16] Zierler N., Schlessinger M.: Boolean embeddings of orthomodular sets and quantum logic. Duke Math. J. 32 (1965), 251-262. | MR