Compactifications and uniformities on sigma frames
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 189-198
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A bijective correspondence between strong inclusions and compactifications in the setting of $\sigma$-frames is presented. The category of uniform $\sigma$-frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the $\sigma$-frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.
A bijective correspondence between strong inclusions and compactifications in the setting of $\sigma$-frames is presented. The category of uniform $\sigma$-frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the $\sigma$-frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.
Classification : 18B35, 54D35, 54E05, 54E52, 54J05
Keywords: strong inclusion; compactification; uniform $\sigma$-frame; uniform cozero
@article{CMUC_1991_32_1_a18,
     author = {Walters, Joanne},
     title = {Compactifications and uniformities on sigma frames},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {189--198},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118301},
     zbl = {0735.54014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a18/}
}
TY  - JOUR
AU  - Walters, Joanne
TI  - Compactifications and uniformities on sigma frames
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 189
EP  - 198
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a18/
LA  - en
ID  - CMUC_1991_32_1_a18
ER  - 
%0 Journal Article
%A Walters, Joanne
%T Compactifications and uniformities on sigma frames
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 189-198
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a18/
%G en
%F CMUC_1991_32_1_a18
Walters, Joanne. Compactifications and uniformities on sigma frames. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 189-198. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a18/

[1] Banaschewski B.: Frames and compactifications. Proc. I. International Symp. on Extension Theory of Topological Structures and Its Applications. VEB Deutscher Verlag der Wissenschaften, 1969. | Zbl

[2] Banaschewski B., Gilmour C.R.A.: Stone-Čech compactification and dimension theory for regular $\sigma$-frames. J. London Math. Soc.(2) No. 127, 39, part 1 1-8 (1989). | MR | Zbl

[3] Banaschewski B., Mulvey C.: Stone-Čech compactification of Locales I. Houston J. of Math. 6, 3 (1980), 301-312. | MR | Zbl

[4] Frith J.L.: The Category of Uniform Frames. Cahier de Topologie et Geometrie, to appear. | MR | Zbl

[5] Gilmour C.R.A.: Realcompact Alexandroff spaces and regular $\sigma$-frames. Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. | MR

[6] Ginsburg S., Isbell J.R.: Some operators on uniform spaces. Trans. Amer. Math. Soc. 36 (1959), 145-168. | MR | Zbl

[7] Johnstone P.T.: Stone Spaces. Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. | MR | Zbl

[8] Madden J., Vermeer H.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. (1985), 1-8.

[9] Pultr A.: Pointless uniformities I. Complete regularity. Comment. Math. Univ. Carolinae 25 (1984), 91-104. | MR | Zbl