N-compact frames
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 173-187
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate notions of $\Bbb N$-compactness for frames. We find that the analogues of equivalent conditions defining $\Bbb N$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame `$\Bbb N$-cubes' are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\Bbb N$-compactness form a much larger class, and better embody what `$\Bbb N$-compact frames' should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the `$\Bbb N$-compactifications'), which both restrict to the spatial $\Bbb N$-compactification.
We investigate notions of $\Bbb N$-compactness for frames. We find that the analogues of equivalent conditions defining $\Bbb N$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame `$\Bbb N$-cubes' are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\Bbb N$-compactness form a much larger class, and better embody what `$\Bbb N$-compact frames' should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the `$\Bbb N$-compactifications'), which both restrict to the spatial $\Bbb N$-compactification.
Classification : 06A23, 06D20, 06D99, 18B30, 54A05, 54D20
Keywords: frame; locale; complete Heyting algebra; $\Bbb N$-compact
@article{CMUC_1991_32_1_a17,
     author = {Schlitt, Greg M.},
     title = {N-compact frames},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {173--187},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118300},
     zbl = {0747.06009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a17/}
}
TY  - JOUR
AU  - Schlitt, Greg M.
TI  - N-compact frames
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 173
EP  - 187
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a17/
LA  - en
ID  - CMUC_1991_32_1_a17
ER  - 
%0 Journal Article
%A Schlitt, Greg M.
%T N-compact frames
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 173-187
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a17/
%G en
%F CMUC_1991_32_1_a17
Schlitt, Greg M. N-compact frames. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 173-187. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a17/

[Ba] Banaschewski B.: Über nulldimensionale Räume. Math. Nachr. 13 (1955), 129-140. | MR | Zbl

[Ba1] Banaschewski B.: Universal 0-dimensional compactifications. preprint.

[Ba,Mu] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales I. Houston Journal of Mathematics 6 (1980), 301-311. | MR | Zbl

[Ch] Chew K.P.: A characterization of $\Bbb N$-compact spaces. Proc. Amer. Math. Soc. 26 (1970), 679-682. | MR

[Do,St] Dowker C.H., Strauss D.: Sums in the category of frames. Houston Journal of Mathematics 3 (1976), 17-32. | MR | Zbl

[Ed,Oh] Eda K., Ohta H.: On Abelian Groups of Integer-Valued Continuous Functions, their $\Bbb Z$-duals and $\Bbb Z$-reflexivity. In Abelian Group Theory, Proc. of Third Conf., Oberwolfach. Gordon & Breach Science Publishers, 1987. | MR

[En,Mr] Engelking R., Mrówka S.: On E-compact spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-436. | MR

[He] Herrlich H.: $\frak E$-kompakte Räume. Math.Zeitschr. 96 (1967), 228-255. | MR

[Je] Jech T.: Set Theory. Academic Press, New York-London, 1978. | MR | Zbl

[Jo] Johnstone P.T.: The point of pointless topology. Bull. Amer. Math. Soc. 8 (1983), 41-53. | MR | Zbl

[Jo1] Johnstone P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982. | MR | Zbl

[Ke] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37 (1950), 75-76. | MR | Zbl

[Ma,Ve] Madden J., Vermeer J.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. (1986), 437-480. | Zbl

[Mr] Mrówka S.: Structures of continuous functions III. Verh. Nederl. Akad. Weten., Sectl I, 68 (1965), 74-82. | MR

[Mr2] Mrówka S.: Structures of continuous functions VIII. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 563-566. | MR

[Sc] Schlitt G.: The Lindelöf-Tychonoff theorem and choice principles. to appear. | MR | Zbl

[St,Se] Steen L.A., Seebach J.A.: Counterexamples in Topology. Holt, Rinehart & Wilson, 1970 (Second edition by Springer-Verlag, 1978). | MR | Zbl

[Ve] Vermeulen H.J.: Doctoral Diss. University of Sussex, 1987.