On FU($p$)-spaces and $p$-sequential spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 161-171
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Following Kombarov we say that $X$ is $p$-sequential, for $p\in\alpha^\ast$, if for every non-closed subset $A$ of $X$ there is $f\in{}^\alpha X$ such that $f(\alpha)\subseteq A$ and $\bar f(p)\in X\backslash A$. This suggests the following definition due to Comfort and Savchenko, independently: $X$ is a {\rm FU($p$)}-space if for every $A\subseteq X$ and every $x\in A^{-}$ there is a function $f\in {}^\alpha A$ such that $\bar f(p)=x$. It is not hard to see that $p \leq {\,_{\operatorname{RK}}} q$ ($\leq {\,_{\operatorname{RK}}}$ denotes the Rudin--Keisler order) $\Leftrightarrow $ every $p$-sequential space is $q$-sequential $\Leftrightarrow $ every {\rm FU($p$)}-space is a {\rm FU($q$)}-space. We generalize the spaces $S_n$ to construct examples of $p$-sequential (for $p\in U(\alpha )$) spaces which are not {\rm FU($p$)}-spaces. We slightly improve a result of Boldjiev and Malykhin by proving that every $p$-sequential (Tychonoff) space is a {\rm FU($q$)}-space $\Leftrightarrow \forall \nu \omega _1 (p^\nu \leq {\,_{\operatorname{RK}}} q)$, for $p,q \in \omega ^\ast $; and $S_n$ is a {\rm FU($p$)}-space for $p\in \omega ^\ast $ and $1
Following Kombarov we say that $X$ is $p$-sequential, for $p\in\alpha^\ast$, if for every non-closed subset $A$ of $X$ there is $f\in{}^\alpha X$ such that $f(\alpha)\subseteq A$ and $\bar f(p)\in X\backslash A$. This suggests the following definition due to Comfort and Savchenko, independently: $X$ is a {\rm FU($p$)}-space if for every $A\subseteq X$ and every $x\in A^{-}$ there is a function $f\in {}^\alpha A$ such that $\bar f(p)=x$. It is not hard to see that $p \leq {\,_{\operatorname{RK}}} q$ ($\leq {\,_{\operatorname{RK}}}$ denotes the Rudin--Keisler order) $\Leftrightarrow $ every $p$-sequential space is $q$-sequential $\Leftrightarrow $ every {\rm FU($p$)}-space is a {\rm FU($q$)}-space. We generalize the spaces $S_n$ to construct examples of $p$-sequential (for $p\in U(\alpha )$) spaces which are not {\rm FU($p$)}-spaces. We slightly improve a result of Boldjiev and Malykhin by proving that every $p$-sequential (Tychonoff) space is a {\rm FU($q$)}-space $\Leftrightarrow \forall \nu \omega _1 (p^\nu \leq {\,_{\operatorname{RK}}} q)$, for $p,q \in \omega ^\ast $; and $S_n$ is a {\rm FU($p$)}-space for $p\in \omega ^\ast $ and $1$ every sequential space $X$ with $\sigma (X)\leq n$ is a {\rm FU($p$)}-space $\Leftrightarrow \exists \{p_{n-2}, \dots , p_1\}\subseteq \omega ^\ast (p_{n-2}{\,_{\operatorname{RK}}} \dots {\,_{\operatorname{RK}}} p_1 $; hence, it is independent with ZFC that $S_3$ is a {\rm FU($p$)}-space for all $p\in \omega ^\ast $. It is also shown that $|\beta (\alpha )\setminus U(\alpha )|\leq 2^\alpha \Leftrightarrow $ every space $X$ with $t(X)\alpha $ is $p$-sequential for some $p\in U(\alpha ) \Leftrightarrow $ every space $X$ with $t(X)\alpha $ is a {\rm FU($p$)}-space for some $p\in U(\alpha )$; if $t(X)\leq \alpha $ and $|X|\leq 2^\alpha $, then $ \exists p\in U(\alpha ) $ ($X$ is a {\rm FU($p$)}-space).
Classification : 03E05, 04A20, 54A25, 54D55, 54D99
Keywords: ultrafilter; Rudin--Frol\'\i k order; Rudin--Keisler order; $p$-compact; quasi $M$-compact; strongly $M$-sequential; weakly $M$-sequential; $p$-sequential; FU($p$)-space; sequential; $P$-point
@article{CMUC_1991_32_1_a16,
     author = {Garcia-Ferreira, Salvador},
     title = {On {FU(}$p$)-spaces and $p$-sequential spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {161--171},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118299},
     zbl = {0789.54032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a16/}
}
TY  - JOUR
AU  - Garcia-Ferreira, Salvador
TI  - On FU($p$)-spaces and $p$-sequential spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 161
EP  - 171
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a16/
LA  - en
ID  - CMUC_1991_32_1_a16
ER  - 
%0 Journal Article
%A Garcia-Ferreira, Salvador
%T On FU($p$)-spaces and $p$-sequential spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 161-171
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a16/
%G en
%F CMUC_1991_32_1_a16
Garcia-Ferreira, Salvador. On FU($p$)-spaces and $p$-sequential spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a16/

[A] Arhangel'skii A.V.: Martin's axiom and the construction of homogeneous bicompacta of countable tightness. Soviet Math. Dokl. 17 (1976), 256-260.

[AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320. | MR

[Ba] Balogh Z.: On compact Hausdorff spaces of countable tightness. Proc. Amer. Math. Soc. 105 (1989), 755-764. | MR | Zbl

[Be] Bernstein A.R.: A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185-193. | MR | Zbl

[BM] Boldjiev B., Malykhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property. Comment. Math. Univ. Carolinae 31 (1990), 23-25. | MR | Zbl

[Bo] Booth D.D.: Ultrafilters on a countable set. Ann. Math. Logic 2 (1970), 1-24. | MR | Zbl

[C] Comfort W.W.: Ultrafilters: some old and some new results. Bull. Amer. Math. Soc. 83 (1977), 417-455. | MR

[CN1] Comfort W.W., Negrepontis S.: On families of large oscillation. Fund. Math. 75 (1972), 275-290. | MR | Zbl

[CN2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters. Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974. | MR | Zbl

[F] Fedorčuk V.V.: Fully closed mappings and the compatibility of some theorems of general topology with the axioms of set-theory. Math. USSR Sbornik 28 (1976), 1-26.

[G1] Garcia-Ferreira S.: Various Orderings on the Space of Ultrafilters. Doctoral Dissertation, Wesleyan University, 1990.

[G2] Garcia-Ferreira S.: Three Orderings on $\beta (ømega)\setminus ømega $. preprint. | MR | Zbl

[K1] Kombarov A.P.: On a theorem of A. H. Stone. Soviet Math. Dokl. 27 (1983), 544-547. | Zbl

[K2] Kombarov A.P.: Compactness and sequentiality with respect to a set of ultrafilters. Moscow Univ. Math. Bull. 40 (1985), 15-18. | MR | Zbl

[M] Mills Ch.: An easier proof of the Shelah $P$-point independence theorem. Rapport 78, Wiskundig Seminarium, Free University of Amsterdam.

[Sa] Savchenko I.A.: Convergence with respect to ultrafilters and the collective normality of products. Moscow Univ. Math. Bull. 43 (1988), 45-47. | MR | Zbl

[W] Wimmers E.L.: The Shelah $P$-point independence theorem. Israel J. Math. 43 (1982), 28-48. | MR | Zbl