Keywords: ultrafilter; Rudin--Frol\'\i k order; Rudin--Keisler order; $p$-compact; quasi $M$-compact; strongly $M$-sequential; weakly $M$-sequential; $p$-sequential; FU($p$)-space; sequential; $P$-point
@article{CMUC_1991_32_1_a16,
author = {Garcia-Ferreira, Salvador},
title = {On {FU(}$p$)-spaces and $p$-sequential spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {161--171},
year = {1991},
volume = {32},
number = {1},
mrnumber = {1118299},
zbl = {0789.54032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a16/}
}
Garcia-Ferreira, Salvador. On FU($p$)-spaces and $p$-sequential spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a16/
[A] Arhangel'skii A.V.: Martin's axiom and the construction of homogeneous bicompacta of countable tightness. Soviet Math. Dokl. 17 (1976), 256-260.
[AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320. | MR
[Ba] Balogh Z.: On compact Hausdorff spaces of countable tightness. Proc. Amer. Math. Soc. 105 (1989), 755-764. | MR | Zbl
[Be] Bernstein A.R.: A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185-193. | MR | Zbl
[BM] Boldjiev B., Malykhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property. Comment. Math. Univ. Carolinae 31 (1990), 23-25. | MR | Zbl
[Bo] Booth D.D.: Ultrafilters on a countable set. Ann. Math. Logic 2 (1970), 1-24. | MR | Zbl
[C] Comfort W.W.: Ultrafilters: some old and some new results. Bull. Amer. Math. Soc. 83 (1977), 417-455. | MR
[CN1] Comfort W.W., Negrepontis S.: On families of large oscillation. Fund. Math. 75 (1972), 275-290. | MR | Zbl
[CN2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters. Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974. | MR | Zbl
[F] Fedorčuk V.V.: Fully closed mappings and the compatibility of some theorems of general topology with the axioms of set-theory. Math. USSR Sbornik 28 (1976), 1-26.
[G1] Garcia-Ferreira S.: Various Orderings on the Space of Ultrafilters. Doctoral Dissertation, Wesleyan University, 1990.
[G2] Garcia-Ferreira S.: Three Orderings on $\beta (ømega)\setminus ømega $. preprint. | MR | Zbl
[K1] Kombarov A.P.: On a theorem of A. H. Stone. Soviet Math. Dokl. 27 (1983), 544-547. | Zbl
[K2] Kombarov A.P.: Compactness and sequentiality with respect to a set of ultrafilters. Moscow Univ. Math. Bull. 40 (1985), 15-18. | MR | Zbl
[M] Mills Ch.: An easier proof of the Shelah $P$-point independence theorem. Rapport 78, Wiskundig Seminarium, Free University of Amsterdam.
[Sa] Savchenko I.A.: Convergence with respect to ultrafilters and the collective normality of products. Moscow Univ. Math. Bull. 43 (1988), 45-47. | MR | Zbl
[W] Wimmers E.L.: The Shelah $P$-point independence theorem. Israel J. Math. 43 (1982), 28-48. | MR | Zbl