On $\delta $-continuous selections of small multifunctions and covering properties
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 155-159
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The spaces for which each $\delta$-continuous function can be extended to a $2\delta$-small point-open l.s.c\. multifunction (resp. point-closed u.s.c\. multifunction) are studied. Some sufficient conditions and counterexamples are given.
The spaces for which each $\delta$-continuous function can be extended to a $2\delta$-small point-open l.s.c\. multifunction (resp. point-closed u.s.c\. multifunction) are studied. Some sufficient conditions and counterexamples are given.
Classification : 54C60, 54C65, 54D18, 54D20
Keywords: $\delta $-continuous selections; small multifunctions; paracompactness; orthocompactness
@article{CMUC_1991_32_1_a15,
     author = {Fedeli, Alessandro and Pelant, Jan},
     title = {On $\delta $-continuous selections of small multifunctions  and covering properties},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {155--159},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118298},
     zbl = {0734.54010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a15/}
}
TY  - JOUR
AU  - Fedeli, Alessandro
AU  - Pelant, Jan
TI  - On $\delta $-continuous selections of small multifunctions  and covering properties
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 155
EP  - 159
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a15/
LA  - en
ID  - CMUC_1991_32_1_a15
ER  - 
%0 Journal Article
%A Fedeli, Alessandro
%A Pelant, Jan
%T On $\delta $-continuous selections of small multifunctions  and covering properties
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 155-159
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a15/
%G en
%F CMUC_1991_32_1_a15
Fedeli, Alessandro; Pelant, Jan. On $\delta $-continuous selections of small multifunctions  and covering properties. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 155-159. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a15/

[1] Burke D.K.: Orthocompactness and perfect mappings. Proc. Amer. Math. Soc. 79 (1980), 484-486. | MR | Zbl

[2] Burke D.K.: Covering properties. Chapter 9 of Handbook of set-theoretic topology, edited by K. Kunen and J.E. Vaughan, Elsevier Science Publishers, B.V., North Holland, 1984, 347-422. | MR | Zbl

[3] Gruenhage G.: On closed images of orthocompact spaces. Proc. Amer. Math. Soc. 77 (1979), 389-394. | MR | Zbl

[4] Klee V.: Stability of the fixed point theory. Colloq. Math. 8 (1961), 43-46. | MR

[5] Muenzenberger T.B.: On the proximate fixed point property for multifunctions. Colloq. Math. 19 (1968), 245-250. | MR | Zbl

[6] Schirmer H.: $\delta $-continuous selections of small multifunctions. Can. J. Math. XXIV, (4) (1972), 631-635. | MR | Zbl

[7] Smithson R.E.: A note on $\delta $-continuity and proximate fixed points for multi-valued functions. Proc Amer. Math. Soc. 23 (1969), 256-260. | MR | Zbl