Completely regular spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 129-153
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We conduct an investigation of the relationships which exist between various generalizations of complete regularity in the setting of merotopic spaces, with particular attention to filter spaces such as Cauchy spaces and convergence spaces. Our primary contribution consists in the presentation of several counterexamples establishing the divergence of various such generalizations of complete regularity. We give examples of: (1) a contigual zero space which is not weakly regular and is not a Cauchy space; (2) a separated filter space which is a $z$-regular space but not a nearness space; (3) a separated, Cauchy, zero space which is $z$-regular but not regular; (4) a separated, Cauchy, zero space which is $\mu$-regular but not regular and not $z$-regular; (5) a separated, Cauchy, zero space which is not weakly regular; (6) a topological space which is regular and $\mu$-regular but not $z$-regular; (7) a filter, zero space which is regular and $z$-regular but not completely regular; and, (8) a regular Hausdorff topological space which is $z$-regular but not completely regular.
We conduct an investigation of the relationships which exist between various generalizations of complete regularity in the setting of merotopic spaces, with particular attention to filter spaces such as Cauchy spaces and convergence spaces. Our primary contribution consists in the presentation of several counterexamples establishing the divergence of various such generalizations of complete regularity. We give examples of: (1) a contigual zero space which is not weakly regular and is not a Cauchy space; (2) a separated filter space which is a $z$-regular space but not a nearness space; (3) a separated, Cauchy, zero space which is $z$-regular but not regular; (4) a separated, Cauchy, zero space which is $\mu$-regular but not regular and not $z$-regular; (5) a separated, Cauchy, zero space which is not weakly regular; (6) a topological space which is regular and $\mu$-regular but not $z$-regular; (7) a filter, zero space which is regular and $z$-regular but not completely regular; and, (8) a regular Hausdorff topological space which is $z$-regular but not completely regular.
Classification : 18B30, 54B30, 54C30, 54C40, 54D15, 54E17, 54G20
Keywords: merotopic space; nearness space; Cauchy space; filter merotopic space; pretopological space; zero space; complete regularity; weak regularity; $z$-regularity; $\mu$-regularity
@article{CMUC_1991_32_1_a14,
     author = {Bentley, H. L. and Lowen-Colebunders, E.},
     title = {Completely regular spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {129--153},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118297},
     zbl = {0763.54016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a14/}
}
TY  - JOUR
AU  - Bentley, H. L.
AU  - Lowen-Colebunders, E.
TI  - Completely regular spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 129
EP  - 153
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a14/
LA  - en
ID  - CMUC_1991_32_1_a14
ER  - 
%0 Journal Article
%A Bentley, H. L.
%A Lowen-Colebunders, E.
%T Completely regular spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 129-153
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a14/
%G en
%F CMUC_1991_32_1_a14
Bentley, H. L.; Lowen-Colebunders, E. Completely regular spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 129-153. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a14/

[BH78a] Bentley H.L., H. Herrlich H.: The reals and the reals. Gen. Topol. Appl. 9 (1978), 221-232. | MR | Zbl

[BH78b] Bentley H.L., Herrlich H.: Completion as reflection. Comment. Math. Univ. Carolinae 19 (1978), 541-568. | MR | Zbl

[BH79] Bentley H.L., Herrlich H.: Completeness for nearness spaces. In: Topological Structures II, part 1, Math. Centre Tracts 115, Amsterdam, 1979, 29-40. | MR | Zbl

[BH82] Bentley H.L., Herrlich H.: The coreflective hull of the contigual spaces in the category of merotopic spaces. In: Categorical Aspects of Topology and Analysis, Lect. Notes in Math. 915, Springer-Verlag, Berlin, 1982, 16-26. | MR | Zbl

[BHL86] Bentley H.L., Herrlich H., Lowen-Colebunders E.: Convergence. J. Pure Appl. Algebra, to appear. | MR | Zbl

[BHO89] Bentley H.L., Herrlich H., Ori R.G.: Zero sets and complete regularity for nearness spaces. In: Categorical Topology and its Relations to Analysis, Algebra and Combinatorics, Prague, Czechoslovakia, 22-27 August 1988, Ed. Jiří Adámek and Saunders MacLane, World Scientific Publ. Co., Singapore, 1989, 446-461. | MR

[BHR76] Bentley H.L., Herrlich H., Robertson W.A.: Convenient categories for topologists. Comment. Math. Univ. Carolinae 17 (1976), 207-227. | MR | Zbl

[BM76] Butzmann H.P., Müller B.: Topological $\Cal C$-embedded spaces. General Topol. and its Appl. 6 (1976), 17-20. | MR

[Č66] Čech E.: Topological Spaces. Revised edition by Z. Frolík and M. Katětov, Publ. House of the Czechoslovak Acad. of Sci., Prague, and Interscience Publ., London, 1966. | MR

[C48] Choquet G.: Convergences. Ann. Univ. Grenoble Sect. Sci. Math. Phys. (NS) 23 (1948), 57-112. | MR | Zbl

[E89] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. | MR | Zbl

[F59] Fisher H.R.: Limesräume. Math. Ann. 137 (1959), 269-303. | MR

[HJ61] Henriksen M., Johnson D.G.: On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961), 73-94. | MR | Zbl

[H74a] Herrlich H.: A concept of nearness. Gen. Topol. Appl. 4 (1974), 191-212. | MR | Zbl

[H74b] Herrlich H.: Topological structures. In: Topological Structures I, Math. Centre Tracts 52, 1974, 59-122. | MR | Zbl

[H83] Herrlich H.: Categorical topology 1971-1981. In: General Topology and its Relations to Modern Analysis and Algebra V, Proceedings of the Fifth Prague Topological Symposium 1981, Heldermann Verlag, Berlin, 1983, 279-383. | MR | Zbl

[H88] Herrlich H.: Topologie II: Uniforme Räume. Heldermann Verlag, Berlin, 1988. | MR | Zbl

[K63] Katětov M.: Allgemeine Stetigkeitsstrukturen. Proc. Intern. Congr. Math. Stockholm 1962 (1963), 473-479. | MR

[K65] Katětov M.: On continuity structures and spaces of mappings. Comment. Math. Univ. Carolinae 6 (1965), 257-278. | MR

[Ke68] Keller H.: Die Limes-uniformisierbarkeit der Limesräume. Math. Ann. 176 (1968), 334-341. | MR | Zbl

[KR74] Kent D., Richardson G.: Regular completions of Cauchy spaces. Pacific J. Math. 51 (1974), 483-490. | MR | Zbl

[LC89] Lowen-Colebunders E.: Function Classes of Cauchy Continuous Maps. Marcel Dekker, Inc., New York, 1989. | MR | Zbl

[P88] Preuß G.: Theory of Topological Spaces. D. Reidel Publ. Co., Dordrecht, 1988.

[R75] Robertson W.A.: Convergence as a Nearness Concept. Thesis, Carleton University, Ottawa, 1975.

[Š43] Šanin N.: On separation in topological spaces. Dok. Akad. Nauk SSSR 38 (1943), 110-113. | MR

[vEF51] van Est W.T., Freudenthal H.: Trennung durch stetige Funktionen in topologischen Räume. Proc. Kon. Ned Ak. v. Wet., Ser A, 54 (1951), 359-368. | MR

[W70] Willard S.: General Topology. Addison-Wesley Publ. Co., Reading, 1970. | MR | Zbl