Mean quadratic convergence of signed random measures
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 119-123
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.
We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.
Classification : 28A20, 28C05, 60B10, 60F25, 60G57
Keywords: relative compactness; mean quadratic convergence
@article{CMUC_1991_32_1_a12,
     author = {Jacob, P. and Oliveira, P. E.},
     title = {Mean quadratic convergence of signed random measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {119--123},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118295},
     zbl = {0731.60030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a12/}
}
TY  - JOUR
AU  - Jacob, P.
AU  - Oliveira, P. E.
TI  - Mean quadratic convergence of signed random measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 119
EP  - 123
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a12/
LA  - en
ID  - CMUC_1991_32_1_a12
ER  - 
%0 Journal Article
%A Jacob, P.
%A Oliveira, P. E.
%T Mean quadratic convergence of signed random measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 119-123
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a12/
%G en
%F CMUC_1991_32_1_a12
Jacob, P.; Oliveira, P. E. Mean quadratic convergence of signed random measures. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 119-123. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a12/

[1] Billingsley P.: Convergence of Probability Measures. John Wiley & Sons, 1968. | MR | Zbl

[2] Bonkian S.M.: Contribution à l'étude des mesures aléatoires du second ordre. Thèse du 3$^{ {ème}}$ cycle, Université des Sciences et Techniques de Lille I, 1983.

[3] Halmos P.R.: Measure Theory. D. Van Nostrand Co. Inc., Princeton, New Jersey, 1950. | MR | Zbl

[4] Jacob P.: Convergence uniforme à distance finie de mesures signées. Ann. Inst. Henri Poincaré, 15 (1979), n$^{ o}$4, 355-373. | MR | Zbl

[5] Kallenberg O.: Random Measures. Academic Press, 1976. | MR | Zbl

[6] Lima E.L.: Espaços métricos. Projecto Euclides, IMPA, Rio de Janeiro, 1983. | Zbl

[7] Marle C.-M.: Mesures et Probabilités. Enseignement des Sciences, Hermann, Paris, 1974. | MR | Zbl

[8] Oliveira P.E.: Convergence de suite de mesures et convergence des masses. Pub. IRMA, Lille, 13 (1988), II.

[9] Tortrat A.: Calcul des probabilités et introduction aux processus aléatoires. Masson, Paris, 1971. | MR | Zbl

[10] Varadarajan V.S.: Measures on Topological Spaces. Transl. of Ame. Math. Soc., Series 2, 48 (1965), 161-228.