Convex orderings for stochastic processes
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 115-118
We consider partial orderings for stochastic processes induced by expectations of convex or increasing convex (concave or increasing concave) functionals. We prove that these orderings are implied by the analogous finite dimensional orderings.
We consider partial orderings for stochastic processes induced by expectations of convex or increasing convex (concave or increasing concave) functionals. We prove that these orderings are implied by the analogous finite dimensional orderings.
Classification :
60E99, 60G07, 60G99
Keywords: stochastic orders; convex orders; orders for random processes
Keywords: stochastic orders; convex orders; orders for random processes
@article{CMUC_1991_32_1_a11,
author = {Bassan, Bruno and Scarsini, Marco},
title = {Convex orderings for stochastic processes},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {115--118},
year = {1991},
volume = {32},
number = {1},
mrnumber = {1118294},
zbl = {0731.60048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a11/}
}
Bassan, Bruno; Scarsini, Marco. Convex orderings for stochastic processes. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 115-118. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a11/
[1] Stoyan D.: Comparison Methods for Queues and Other Stochastic Models. Wiley, New York, 1983. | MR | Zbl
[2] Kamae T., Krengel U., O'Brien G.L.: Stochastic inequalities on partially ordered spaces. Annals of Probability 5 (1977), 899-912. | MR | Zbl
[3] Lindqvist B.H.: Association of probability measures on partially ordered spaces. Journal of Multivariate Analysis 26 (1988), 111-132. | MR | Zbl