$m$-medial $n$-quasigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 9-14
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m
For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.
Classification : 20N05, 20N15
Keywords: $n$-quasigroup; medial
@article{CMUC_1991_32_1_a1,
     author = {Kepka, Tom\'a\v{s}},
     title = {$m$-medial $n$-quasigroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {9--14},
     year = {1991},
     volume = {32},
     number = {1},
     mrnumber = {1118284},
     zbl = {0736.20044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a1/}
}
TY  - JOUR
AU  - Kepka, Tomáš
TI  - $m$-medial $n$-quasigroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1991
SP  - 9
EP  - 14
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a1/
LA  - en
ID  - CMUC_1991_32_1_a1
ER  - 
%0 Journal Article
%A Kepka, Tomáš
%T $m$-medial $n$-quasigroups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1991
%P 9-14
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a1/
%G en
%F CMUC_1991_32_1_a1
Kepka, Tomáš. $m$-medial $n$-quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) no. 1, pp. 9-14. http://geodesic.mathdoc.fr/item/CMUC_1991_32_1_a1/

[1] Bénéteau L.: Free commutative Moufang loops and anticommutative graded rings. J. Algebra 67 (1980), 1-35. | MR

[2] Bénéteau L.: Une classe particulière de matroïdes parfaits. Annals of Discr. Math. 8 (1980), 229-232. | MR

[3] Bénéteau L., Kepka t., Lacaze J.: Small finite trimedial quasigroups. Commun. Algebra 14 (1986), 1067-1090. | MR

[4] Bol G.: Gewebe und Gruppen. Math. Ann. 114 (1937), 414-431. | MR | Zbl

[5] Deza M., Hamada N.: The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme. Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.

[6] Evans T.: Abstract mean values. Duke Math. J. 30 (1963), 331-347. | MR | Zbl

[7] Kepka T.: Structure of triabelian quasigroups. Comment. Math. Univ. Carolinae 17 (1976), 229-240. | MR | Zbl