@article{CMUC_1990_31_4_a7,
author = {Januszewski, Janusz},
title = {On the {Hammerstein} integral equations in {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {685--691},
year = {1990},
volume = {31},
number = {4},
mrnumber = {1091365},
zbl = {0741.45005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a7/}
}
Januszewski, Janusz. On the Hammerstein integral equations in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 4, pp. 685-691. http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a7/
[1] Ambrosetti A.: Un ieorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-369. | MR
[2] Azbieliev N. V., Caliuk Z.B.: Ob integralnych nieravienstvach. Matem. Sbornik 56 (1962), 325-342. | MR
[3] Daneš J.: On Densifying and Related Mappings and Their Application in Nonlinear Functional Analysis. Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. | MR
[4] Deimling K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Math. 596, Berlin, Heidelberg, New York, 1977. | MR | Zbl
[5] Heinz H. P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Analysis 7 (1983), 1351-1371. | MR | Zbl
[6] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E.: Integral Operators in Spaces of Integrable Functions. Moskva 1966.
[7] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. J. Nonlinear Analysis 4 (1980), 985-999. | MR
[8] Szufla S.: Existence theorems for $L^p$-solutions of integral equations in Banach spaces. Publ. Inst. Math. 40, 54 (1986), 99-105. | MR
[9] Szufla S.: Appendix to the paper : Existence theorems for Lp-solutions of integral equations in Banach spaces. Publ. Inst. Math. 43, 57 (1988), 113-116. | MR