Not all dyadic spaces are supercompact
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 4, pp. 775-779 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54B15, 54D30, 54G20
@article{CMUC_1990_31_4_a17,
     author = {Bell, Murray G.},
     title = {Not all dyadic spaces are supercompact},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {775--779},
     year = {1990},
     volume = {31},
     number = {4},
     mrnumber = {1091375},
     zbl = {0716.54017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a17/}
}
TY  - JOUR
AU  - Bell, Murray G.
TI  - Not all dyadic spaces are supercompact
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 775
EP  - 779
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a17/
LA  - en
ID  - CMUC_1990_31_4_a17
ER  - 
%0 Journal Article
%A Bell, Murray G.
%T Not all dyadic spaces are supercompact
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 775-779
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a17/
%G en
%F CMUC_1990_31_4_a17
Bell, Murray G. Not all dyadic spaces are supercompact. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 4, pp. 775-779. http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a17/

[1] Alexandroff P. S.: Zur Theorie der topologischen Räume. (Doklady) Acad. Sci. URSS 11 (1936), 55-58. | Zbl

[2] Bell M. G.: Not all compact spaces are supercompact. General Topology Appl. 8 (1978), 151-155. | MR

[3] Bell M. G.: Polyadic spaces of arbitrary compactness numbers. Comment. Math. Univ. Carolinae 26 (1985), 353-361. | MR | Zbl

[4] Douwen E. van, Mill J. van: Supercompact Spaces. Topology and its Applications 13 (1982), 21-32. | MR

[5] Engelking R.: Cartesian products and dyadic spaces. Fund. Math. 57 (1965), 287-304. | MR | Zbl

[6] Groot J. de: Supercompactness and superextensions. in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. | MR

[7] Mill J. van, Mills C. F.: A nonsupercompact continuous image of a supercompact space. Houston J. Math. 5 (1979), 241-247. | MR

[8] Mills C. F.: Compact topological groups are supercompact. Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978.

[9] Pelczynski A.: Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions. Dissertationes Math. 58, Warszawa 1968. | MR

[10] Rudin M. E.: Lectures on set theoretic topology. Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. | MR

[11] Strok M., Szymanski A.: Compact metric spaces have binary bases. Fund. Math. 89 (1975), 81-91. | MR | Zbl