@article{CMUC_1990_31_4_a17,
author = {Bell, Murray G.},
title = {Not all dyadic spaces are supercompact},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {775--779},
year = {1990},
volume = {31},
number = {4},
mrnumber = {1091375},
zbl = {0716.54017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a17/}
}
Bell, Murray G. Not all dyadic spaces are supercompact. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 4, pp. 775-779. http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a17/
[1] Alexandroff P. S.: Zur Theorie der topologischen Räume. (Doklady) Acad. Sci. URSS 11 (1936), 55-58. | Zbl
[2] Bell M. G.: Not all compact spaces are supercompact. General Topology Appl. 8 (1978), 151-155. | MR
[3] Bell M. G.: Polyadic spaces of arbitrary compactness numbers. Comment. Math. Univ. Carolinae 26 (1985), 353-361. | MR | Zbl
[4] Douwen E. van, Mill J. van: Supercompact Spaces. Topology and its Applications 13 (1982), 21-32. | MR
[5] Engelking R.: Cartesian products and dyadic spaces. Fund. Math. 57 (1965), 287-304. | MR | Zbl
[6] Groot J. de: Supercompactness and superextensions. in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. | MR
[7] Mill J. van, Mills C. F.: A nonsupercompact continuous image of a supercompact space. Houston J. Math. 5 (1979), 241-247. | MR
[8] Mills C. F.: Compact topological groups are supercompact. Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978.
[9] Pelczynski A.: Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions. Dissertationes Math. 58, Warszawa 1968. | MR
[10] Rudin M. E.: Lectures on set theoretic topology. Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. | MR
[11] Strok M., Szymanski A.: Compact metric spaces have binary bases. Fund. Math. 89 (1975), 81-91. | MR | Zbl