@article{CMUC_1990_31_4_a0,
author = {Goeters, H. Pat and Ullery, William},
title = {Butler groups and lattices of types},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {613--619},
year = {1990},
volume = {31},
number = {4},
mrnumber = {1091358},
zbl = {0717.20039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a0/}
}
Goeters, H. Pat; Ullery, William. Butler groups and lattices of types. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 4, pp. 613-619. http://geodesic.mathdoc.fr/item/CMUC_1990_31_4_a0/
[And] Anderson I.: Combinatorics of Finite Sets. Oxford University Press, New York, 1987. | MR | Zbl
[A] Arnold D.: Finite rank torsion free abelian groups and rings. Springer-Verlag Lecture Notes in Math. 931 (1982). | MR | Zbl
[AVI] Arnold D., Vinsonhaler C.: Pure subgroups of finite rank completely decomposable groups II. Abelian Group Theory, Springer-Verlag Lecture Notes in Math. 1006 (1983), 97-143. | MR | Zbl
[AV2] Arnold D. , Vinsonhaler C.: Invariants for a class of torsion-free abelian groups. Proc. Amer. Math. Soc., to appear. | MR | Zbl
[AV3] Arnold D., Vinsonhaler C.: Duality and invariants for Butler groups. preprint. | MR | Zbl
[AV4] Arnold D., Vinsonhaler C.: Isomorphism invariants for a class of torsion-free abelian groups. preprint. | MR | Zbl
[B] Butler M. C. R.: A class of torsion-free abelian groups of finite rank. Proc. London Math. Soc. (3) 15 (1965), 680-698. | MR | Zbl
[CD] Crawley P., Dilworth R.: Algebraic Theory of Lattices. Prentice Hall, 1973. | Zbl
[F] Fuchs L.: Infinite Abelian Groups. Volumes I and II, Academic Press, New York and London, 1970 and 1973. | Zbl
[FM] Fuchs L., Metelli C.: On a class of Butler groups. preprint. | MR | Zbl
[GU] Goeters H.P., Ullery W.: Homomorphic images of completely decomposable finite rank tor-sion-free groups. J. Algebra, to appear. | MR
[G] Grätzer G.: General Lattice Theory. Academic Press, Math. Vol. 75, 1978. | MR
[Le] Lee W.Y .: Co-representing graphs for a class of torsion-free abelian groups. Ph. D. thesis, New Mexico State University, 1986.
[Re] Reid J. D.: On the ring of quasi-endomorphisms of a torsion-free group. Topics in Abelian Groups, Chicago, 1963, 51-68. | MR