@article{CMUC_1990_31_3_a17,
author = {Cap, Andreas},
title = {All linear and bilinear natural concomitants of vector valued differential forms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {567--587},
year = {1990},
volume = {31},
number = {3},
mrnumber = {1078490},
zbl = {0734.53012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a17/}
}
TY - JOUR AU - Cap, Andreas TI - All linear and bilinear natural concomitants of vector valued differential forms JO - Commentationes Mathematicae Universitatis Carolinae PY - 1990 SP - 567 EP - 587 VL - 31 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a17/ LA - en ID - CMUC_1990_31_3_a17 ER -
Cap, Andreas. All linear and bilinear natural concomitants of vector valued differential forms. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 567-587. http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a17/
[C-dW-G] Cahen M., de Wilde M., Gutt S.: Local cohomology of the algebra of $C^/infty $ -functions on a connected manifold. Lett. Math. Phys. 4 (1980), 157-167. | MR
[Ca] Cap A.: Natural operators between vector valued differential forms. Proc. Winter School on Geometry and Physics, Srní 1990, to appear. | MR
[D-C] Dieudonné J. A., Carrell J. B.: Invariant Theory, Old and New. Academic Press, New York - London, 1971. | MR
[dW-L] de Wilde M., Lecomte P.: Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields on a manifold. Composito Math. 45 (1982), 199-205. | MR
[K-M] Kolář I., Michor P.: All natural concomitants of vector valued differential forms. Proc. Winter School on Geometry and Physics, Srní 1987, Supp. ai Rend. Circolo Matematico di Palermo II-16 (1987), 101-108. | MR
[K-M-S] Kolář I., Michor P., Slovák J.: Natural Operators in Differential Geometry. to appear in Springer Ergebnisse. | MR
[Ko] Kolář I.: Some natural operators in differential geometry. Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidl. | MR
[Kr-M] Krupka D., Mikolášová V.: On the uniqueness of some differential invariants: d, [ , ], $\nabla $. Czechoslovak Math. J. 34 (1984), 588-597. | MR
[Mi] Michor P.: Remarks on the Frölicher-Nijenhuis bracket. Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986, D. Reidl. | MR
[Sl] Slovák J.: Peetre Theorem for Nonlinear Operators. Ann. Global Anal. Geom. 6/3 (1988), 273-283. | MR
[vS] van Strien S.: Unicity of the Lie Product. Compositio Math. 40 (1980), 79-85. | MR | Zbl