On weak solutions to a viscoelasticity model
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 557-565 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 45K05, 49J52, 49M15, 73F99, 74D05, 74D10, 74D99
@article{CMUC_1990_31_3_a16,
     author = {Milota, Jaroslav and Ne\v{c}as, Jind\v{r}ich and \v{S}ver\'ak, Vladim{\'\i}r},
     title = {On weak solutions to a viscoelasticity model},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {557--565},
     year = {1990},
     volume = {31},
     number = {3},
     mrnumber = {1078489},
     zbl = {0719.73014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a16/}
}
TY  - JOUR
AU  - Milota, Jaroslav
AU  - Nečas, Jindřich
AU  - Šverák, Vladimír
TI  - On weak solutions to a viscoelasticity model
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 557
EP  - 565
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a16/
LA  - en
ID  - CMUC_1990_31_3_a16
ER  - 
%0 Journal Article
%A Milota, Jaroslav
%A Nečas, Jindřich
%A Šverák, Vladimír
%T On weak solutions to a viscoelasticity model
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 557-565
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a16/
%G en
%F CMUC_1990_31_3_a16
Milota, Jaroslav; Nečas, Jindřich; Šverák, Vladimír. On weak solutions to a viscoelasticity model. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 557-565. http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a16/

[1] Coleman B. D., Mizel V. J.: On the general theory of fading memory. Arch. Rat. Mech. 29 (1968), 18-31. | MR | Zbl

[2] Coleman B. D., Noll W.: An approximation theorem for functionals with applications in continuum mechanics. Arch. Rat. Mech. Anal. 6 (I960), 355-370. | MR | Zbl

[3] Engler H.: Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials. (preprint). | MR | Zbl

[4] Lions J. L.: Quelques methodes de resolution problemes aux limites non lineaires. Dunod, Paris, 1969. | MR

[5] Lions J. L., Magenes E.: Problemes aux limiies non homogenes et applications, Vol I. Dunod, Paris, 1968.

[6] Londen S. O.: An existence result on a Volterra equation in a Banach space. TAMS 235 (1978), 285-304. | MR | Zbl

[7] Miller R. K.: Nonlinear Volterra Integral Equations. Benjamin, 1971. | MR | Zbl

[8] Minty G.: Monotone (nonlinear) operators in a Hilbert space. Duke Math. J. 29 (1962), 341-348. | MR

[9] Nohel J. A., Rogers R. C., Tzavaras A. E.: Weak solutions for a nonlinear system in viscoelasticity. Coram. Part. Diff. Eqs. 13 (1988), 97-127. | MR | Zbl

[10] Renardy M., Hrusa M. J., Nohel J. A.: Mathematical problems in viscoelasticity. Longman, 1987. | Zbl

[11] Saut J. C., Joseph D. D.: Fading memory. Arch. Rat. Mech. Anal. 81 (1982), 53-95. | MR