On evolution inclusions associated with time dependent convex subdifferentials
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 517-527 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A60, 34G20, 47H20, 49J24
@article{CMUC_1990_31_3_a13,
     author = {Papageorgiou, Nikolaos S.},
     title = {On evolution inclusions associated with time dependent convex subdifferentials},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {517--527},
     year = {1990},
     volume = {31},
     number = {3},
     mrnumber = {1078486},
     zbl = {0711.34076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a13/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
TI  - On evolution inclusions associated with time dependent convex subdifferentials
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 517
EP  - 527
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a13/
LA  - en
ID  - CMUC_1990_31_3_a13
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%T On evolution inclusions associated with time dependent convex subdifferentials
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 517-527
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a13/
%G en
%F CMUC_1990_31_3_a13
Papageorgiou, Nikolaos S. On evolution inclusions associated with time dependent convex subdifferentials. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 517-527. http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a13/

[1] Attouch H., Damlamian A.: On multivalued evolution equations in Hilbert spaces. Israel J. Math. 12 (1972), 373-390. | MR | Zbl

[2] Aubin J. P., Cellina A.: Differential inclusions. Springer, Berlin, 1984. | MR | Zbl

[3] Barbu V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leyden, Netherlands, 1976. | MR | Zbl

[4] Brezis H.: Operateurs maximaux monotones. North Holland, Amsterdam, 1973. | Zbl

[5] Chuong P. V.: Some results on density of extreme selections for measurable multifunctions. Math. Nachr. 126 (1986), 313-326. | MR | Zbl

[6] Delahaye J. P., Denel J.: The continuities of the point-to-set maps, definitions and equivalences. Math. Programming Study 10 (1979), 8-12.

[7] Diestel J., Uhl J .J.: Vector measures. A. M. S. Providence, R. I., Math. Surveys IS (1977). | MR | Zbl

[8] Dundorf N., Schwartz J.: Linear operators I. Wiley, New York, 1958.

[9] Edgar G.: Measurability in a Banach apace II. Indiana Univ. Math. Jour. 38 (1979), 559-579. | MR

[10] Fryszkowski A.: Continuous selections for a class of nonconvex multivalued maps. Studia Math. 78 (1983), 163-174. | MR

[11] Kenmochi N.: Some nonlinear parabolic varionational inequalities. Israel J. Math. 22 (1975), 304-331. | MR

[12] Laurent J. P.: Approximation et optimisation. Paris, 1972. | Zbl

[13] Moreau J. J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equations 26 (1977), 347-374. | MR

[14] Papageorgiou N. S.: Convergence theorems for Banach apace valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. | MR

[15] Papageorgiou N. S.: Differential inclusions with state constraints. Proc. Edinburgh Math. Soc. 32 (1988), 81-98. | MR

[16] Rockafellar R. T.: Conjugate duality and optimization. Conference Board of Math. Sci Series, Philadelphia, SIAM Publications 16 (1974). | MR | Zbl

[17] Saint Beuve M. F.: Une extension des théorémes de Novikov et d'Arsenin. exposé no. 18, Seminaire d'Analyse Convéxe 11 (1981), 1801-1810.

[18] Vrabie I.: The nonlinear veraion of Paxy's local existence theorem. Israel J. Math. 32 (1972), 221-235. | MR

[19] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim 15 (1977), 859-903. | MR | Zbl

[20] Watanabe J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25 (1973), 446-463. | MR | Zbl

[21] Yotsutani S.: Evolution equations associated with subdifferentials. J. Math. Soc. Japan 31 (1978), 623-646. | MR