Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 511-515 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15
@article{CMUC_1990_31_3_a12,
     author = {Nieto, Juan J.},
     title = {Remarks on some nonlinear {Dirichlet} problems with unbounded nonlinearities},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {511--515},
     year = {1990},
     volume = {31},
     number = {3},
     mrnumber = {1078485},
     zbl = {0711.34028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a12/}
}
TY  - JOUR
AU  - Nieto, Juan J.
TI  - Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 511
EP  - 515
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a12/
LA  - en
ID  - CMUC_1990_31_3_a12
ER  - 
%0 Journal Article
%A Nieto, Juan J.
%T Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 511-515
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a12/
%G en
%F CMUC_1990_31_3_a12
Nieto, Juan J. Remarks on some nonlinear Dirichlet problems with unbounded nonlinearities. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 3, pp. 511-515. http://geodesic.mathdoc.fr/item/CMUC_1990_31_3_a12/

[1] Aguinaldo L., Schmitt K.: On the boundary value problem $u" + u = au^- + p(t), u(0) = 0 = u(\pi)$. Proc. Amer. Math. Soc. 68 (1978), 64-68. | MR

[2] Ahmad S.: A resonance problem in which the nonlineariiy may grow linearly. Proc. Amer. Mat. Soc. 82 (1984), 381-384. | MR

[3] Brezis H.: Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. 8 (1983), 409-426. | MR | Zbl

[4] Cesari L., Kannan R.: An abstract theorem at resonance. Proc. Amer. Math. Soc. 63 (1977), 221-225. | MR

[5] Cesari L., Kannan R.: Existence of solutions of a nonlinear differential equation. Proc. Amer. Math. Soc. 88 (1983), 605-613. | MR | Zbl

[6] Drábek P.: On the resonance problem with nonlinearity which has arbitrary linear growth. J. Math. Anal. Appl. 127 (1987), 435-442. | MR

[7] Fučík S.: Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat. 101 (1976), 69-87. | MR

[8] Iaanaci R., Nkashama M.N., Ward J.R.: Nonlinear second order elliptic partial differential equations at resonance. Trans. Amer. Math. Soc. 311 (1989), 711-726. | MR

[9] Kannan R., Ortega R.: Existence of solutions of $x'' + x + g(x) = p(t), x(0) = 0 = x(\pi)$. Proc. Amer. Math. Soc. 96 (1986), 67-70. | MR | Zbl

[10] Kannan R., Lakshmikantham V., Nieto J. J.: Sufficient conditions for existence of solutions of nonlinear boundary value problems at resonance. Nonlinear Anal. 7 (1983), 1013-1020. | MR | Zbl

[11] Kannan R., Nieto J. J., Ray M. B.: A class of nonlinear boundary value problems without Landesman-Lazer condition. J. Math. Anal. Appl. 105 (1985), 1-11. | MR | Zbl

[12] Nieto J. J.: Hukuhara-Kneser property for a nonlinear Dirichlet problem. J. Math. Anal. Appl. 128 (1987), 57-63. | MR | Zbl

[13] Nieto J. J.: Aronszajn's theorem for some nonlinear Dirichlet problems with unbounded nonlinearities. Proc. Edinburgh Math. Soc. 31 (1988), 345-351. | MR | Zbl

[14] Schechter M., Shapiro J., Snow M.: Solutions of the nonlinear problem $Au = Nu$ in a Banach space. Trans. Amer. Math. Soc. 241 (1978), 69-78. | MR