Contact problems with given time-dependent friction force in linear viscoelasticity
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 257-262 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B30, 35K85, 35L85, 49A29, 49H05, 49J20, 73F15, 73T05, 73V25, 74Hxx
@article{CMUC_1990_31_2_a7,
     author = {Jaru\v{s}ek, Ji\v{r}{\'\i}},
     title = {Contact problems with given time-dependent friction force in linear viscoelasticity},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {257--262},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077896},
     zbl = {0718.35054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a7/}
}
TY  - JOUR
AU  - Jarušek, Jiří
TI  - Contact problems with given time-dependent friction force in linear viscoelasticity
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 257
EP  - 262
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a7/
LA  - en
ID  - CMUC_1990_31_2_a7
ER  - 
%0 Journal Article
%A Jarušek, Jiří
%T Contact problems with given time-dependent friction force in linear viscoelasticity
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 257-262
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a7/
%G en
%F CMUC_1990_31_2_a7
Jarušek, Jiří. Contact problems with given time-dependent friction force in linear viscoelasticity. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 257-262. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a7/

[1] A. Coddington N. Levinson: Theory of ordinary differential equations. Mc Graw-Hill, New York, 1955. | MR

[2] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique. Dunod, Paris, 1972. | MR

[3] J. Jarušek: Contact problems with bounded friction. Coercive case. Czech. Math. J., 33, 2, 1983, 237-261. | MR

[4] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. | MR

[5] J. Nedoma: On the global geodynamic model of the earth and the plate tectonic hypothesis. part I-III., Beitr. Geophys., 95, 1986, 36-62, 89-105.

[6] J. Nedoma: Tectonic evolution of collision zones I, II. to appear in Beitr. Geophys..

[7] J. Nedoma: Mathematical simulation of the function of large human hips and optimal design of their total endoprothesis. Part 2 (in Czech). Tech. rep. V-407, Inst. Comp. Sci. Czech. Acad. Sci., Prague, 1989.