@article{CMUC_1990_31_2_a6,
author = {Feireisl, Eduard},
title = {Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {243--255},
year = {1990},
volume = {31},
number = {2},
mrnumber = {1077895},
zbl = {0718.73013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/}
}
TY - JOUR AU - Feireisl, Eduard TI - Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem JO - Commentationes Mathematicae Universitatis Carolinae PY - 1990 SP - 243 EP - 255 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/ LA - en ID - CMUC_1990_31_2_a6 ER -
%0 Journal Article %A Feireisl, Eduard %T Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem %J Commentationes Mathematicae Universitatis Carolinae %D 1990 %P 243-255 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/ %G en %F CMUC_1990_31_2_a6
Feireisl, Eduard. Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/
[1] Dafermos C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982), 397-408. | MR | Zbl
[2] Day W. A.: Steady forced vibrations in coupled thermoelasticity. Arch. Rational Mech. Anal. 93 (1986), 323-334. | MR | Zbl
[3] DiPerna R. J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 27-70. | MR | Zbl
[4] Greenberg J. M., MacCamy R. C., Mizel V. J.: On the existence, uniqueness and stability of solutions of the equation $\rho\chi_{tt} = E(\chi_x)\chi_{xx} + \lambda \chi_{xx}$. J. Math. Mech. 17 (1968), 707-728. | MR
[5] Kato T.: Locally coercive nonlinear equations, with applications to some periodic solutions. Duke Math. J. 51 (1984), 923-936. | MR | Zbl
[6] Klainerman S.: Global existence for nonlinear wave equation. Comm. Pure Appl. Math. 33 (1980), 43-101. | MR
[7] Matsumura A.: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation. Publ. Res. Inst. Math. Soc. 13 (1977), 349-379. | MR | Zbl
[8] Racke R.: Initial boundary value problems in one-dimensional non-linear thermoelasticity. Math. Meth. Appl. Sci. 10 (1988), 517-529. | MR
[9] Rothe E. H.: Introduction to various aspects of degree theory in Banach spaces. Providence AMS, 1986. | MR | Zbl
[10] Shibata Y.: On the global existence of classical solutions of mixed problem for some second order nonlinear hyperbolic operators with dissipative term in the interior domain. Funkcialaj Ekvacioj 25 (1982), 303-345. | MR | Zbl
[11] Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 76 (1981), 97-134. | MR | Zbl
[12] Zheng S.: Initial boundary value problems for quasilinear hyperbolic-parabolic coupled systems in higher dimensional spaces. Chinese Ann. of Math. 4B(4) (1983), 443-462. | MR | Zbl
[13] Zheng S.: Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled system. Scienta Sinka, Ser. A 27 (1984), 1274-1286. | MR
[14] Zheng S., Shen W.: Global solutions to the Cauchy problem of quasilinear hyperbolic-parabolic coupled system. Scienta Sinica, Ser. A 10 (1987), 1133-1149. | MR