Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 243-255 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B10, 35B45, 35Q20, 35Q72, 73B30, 73D35, 74A15, 74B10, 74B20
@article{CMUC_1990_31_2_a6,
     author = {Feireisl, Eduard},
     title = {Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {243--255},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077895},
     zbl = {0718.73013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/}
}
TY  - JOUR
AU  - Feireisl, Eduard
TI  - Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 243
EP  - 255
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/
LA  - en
ID  - CMUC_1990_31_2_a6
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%T Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 243-255
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/
%G en
%F CMUC_1990_31_2_a6
Feireisl, Eduard. Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a6/

[1] Dafermos C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982), 397-408. | MR | Zbl

[2] Day W. A.: Steady forced vibrations in coupled thermoelasticity. Arch. Rational Mech. Anal. 93 (1986), 323-334. | MR | Zbl

[3] DiPerna R. J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 27-70. | MR | Zbl

[4] Greenberg J. M., MacCamy R. C., Mizel V. J.: On the existence, uniqueness and stability of solutions of the equation $\rho\chi_{tt} = E(\chi_x)\chi_{xx} + \lambda \chi_{xx}$. J. Math. Mech. 17 (1968), 707-728. | MR

[5] Kato T.: Locally coercive nonlinear equations, with applications to some periodic solutions. Duke Math. J. 51 (1984), 923-936. | MR | Zbl

[6] Klainerman S.: Global existence for nonlinear wave equation. Comm. Pure Appl. Math. 33 (1980), 43-101. | MR

[7] Matsumura A.: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation. Publ. Res. Inst. Math. Soc. 13 (1977), 349-379. | MR | Zbl

[8] Racke R.: Initial boundary value problems in one-dimensional non-linear thermoelasticity. Math. Meth. Appl. Sci. 10 (1988), 517-529. | MR

[9] Rothe E. H.: Introduction to various aspects of degree theory in Banach spaces. Providence AMS, 1986. | MR | Zbl

[10] Shibata Y.: On the global existence of classical solutions of mixed problem for some second order nonlinear hyperbolic operators with dissipative term in the interior domain. Funkcialaj Ekvacioj 25 (1982), 303-345. | MR | Zbl

[11] Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 76 (1981), 97-134. | MR | Zbl

[12] Zheng S.: Initial boundary value problems for quasilinear hyperbolic-parabolic coupled systems in higher dimensional spaces. Chinese Ann. of Math. 4B(4) (1983), 443-462. | MR | Zbl

[13] Zheng S.: Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled system. Scienta Sinka, Ser. A 27 (1984), 1274-1286. | MR

[14] Zheng S., Shen W.: Global solutions to the Cauchy problem of quasilinear hyperbolic-parabolic coupled system. Scienta Sinica, Ser. A 10 (1987), 1133-1149. | MR