Higher monotonicity properties of special functions: application on Bessel case $|\nu| \frac{1}{2}$
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 233-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 33C10, 34A40, 34A99, 34C10, 34C11
@article{CMUC_1990_31_2_a5,
     author = {Do\v{s}l\'a, Zuzana},
     title = {Higher monotonicity properties of special functions: application on {Bessel} case $|\nu| < \frac{1}{2}$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {233--241},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077894},
     zbl = {0721.34028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a5/}
}
TY  - JOUR
AU  - Došlá, Zuzana
TI  - Higher monotonicity properties of special functions: application on Bessel case $|\nu| < \frac{1}{2}$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 233
EP  - 241
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a5/
LA  - en
ID  - CMUC_1990_31_2_a5
ER  - 
%0 Journal Article
%A Došlá, Zuzana
%T Higher monotonicity properties of special functions: application on Bessel case $|\nu| < \frac{1}{2}$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 233-241
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a5/
%G en
%F CMUC_1990_31_2_a5
Došlá, Zuzana. Higher monotonicity properties of special functions: application on Bessel case $|\nu| < \frac{1}{2}$. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a5/

[1] P. Hartman: On differential equations and the function $J^2_\mu + Y^2_\mu$. Amer. J. Math 83 (1961), 154-188. | MR | Zbl

[2] P. Hartman: On differential equations, Volterra equations and the functions $J^2_\mu + Y^2_\mu$. Amer. J. Math 95 (1973), 552-593. | MR

[3] L. Lorch D. J. Neuman: On the composition of completely monotonic functions and completely monotonic sequences and related questions. J. London Math. Soc. (2), 28 (1983), 31-45. | MR

[4] L. Lorch P. Szego: Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1964), 91-96. | MR

[5] L. Lorch P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73. | MR

[6] L. Lorch M. E. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions, III. Canad. J. Math. 22 (1970), 1238-1265. | MR

[7] L. Lorch M. E. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions, IV. Canad. J. Math. 24 (1972), 349-368. | MR

[8] M. E. Muldoon: Higher monotonicity properties of certain Sturm-Liouville functions. Proceedings of the Royal Society of Edinburgh 77A (1977), 23-37. | MR | Zbl

[9] J. Vosmanský: Monotonic properties of zeros and extremants of the differential equation $y" + q(t)y = 0$. Arch. Match. (Brno) 6 (1970), 37-74. | MR

[10] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$. Arch. Math. (Brno) 10 (1974), 87-102. | MR

[11] D. V. Widder: The Laplace Transform. Princeton Univ. Press 1941. | MR | Zbl

[12] Z. Došlá M. Háčik M. E. Muldoon: Further higher monotonicity properties of Sturm-Liouville functions. to appear. | MR