@article{CMUC_1990_31_2_a4,
author = {Brzezina, Miroslav},
title = {Wiener's test of thinness in potential theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {227--232},
year = {1990},
volume = {31},
number = {2},
mrnumber = {1077893},
zbl = {0729.31011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a4/}
}
Brzezina, Miroslav. Wiener's test of thinness in potential theory. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 227-232. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a4/
[Ba] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics 22, Springer-Verlag, Berlin, 1966. | MR | Zbl
[B-H1] J. Bliedtner W. Hansen: Simplicial cones in potential theory. Inventiones Math. 29 (1975), 83-110. | MR
[B-H2] J. Bliedtner W. Hansen: Potential theory, An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986. | MR
[Br1] M. Brelot: Elémentes de la théorie classique du potentiel, 2$^e$ ed. Centre de Documentation Universitaire, Paris, 1961. | MR
[Br2] M. Brelot: Sur les ensembles effilés. Bull. Sci. Math. 68 (1944), 12-36. | MR | Zbl
[Brz] M. Brzezina: On the base and the essential base in parabolic potential theory. Czechoslovak Math. J. (to appear). | MR | Zbl
[C-C] C. Constantinescu A. Cornea: Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972. | MR
[E-G] C. L. Evans F. R. Gariepy: Wiener's criterion for the heat equation. Arch. Rational Mech. Anal. 78 (1982), 293-314. | MR
[G-L] N. Garofalo E. Lanconelli: Wiener's criterion for parabolic equations with variable coefficients and its consequences. Trans. Amer. Math. Soc. 308 (1988), 811-836. | MR
[Ha] W. Hansen: Private communication. | Zbl
[He] L. L. Helms: Introduction to potential theory. Wiley Interscience, New York, 1969. | MR | Zbl
[N-S] P. Negrini V. Scornazzani: Wiener criterion for a class of degenerate elliptic operators. J. Differential Equations 66 (1987), 151-164. | MR
[W] N. Wiener: The Dirichlet problem. J. Math. Phys. 3 (1924), 127-146.