@article{CMUC_1990_31_2_a20,
author = {Kuchta, Milan},
title = {Characterization of chaos for continuous maps of the circle},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {383--390},
year = {1990},
volume = {31},
number = {2},
mrnumber = {1077909},
zbl = {0728.26011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a20/}
}
Kuchta, Milan. Characterization of chaos for continuous maps of the circle. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a20/
[1] L. Block: Periods of periodic points of maps of the circle which have a fixed point. Proc. Amer. Math. Soc. 82 (1981), no. 3, pp. 481-486. | MR | Zbl
[2] L. Block J. Guckenheimer M. Misiurewicz L. S. Young: Periodic points and topological entropy of one-dimensional maps. in book: Global theory of dynamical systems, (Proc. Internal Conf., Northwestern Univ., Evanston, III., 1979, p. 18-34. Lecture Notes in Math. 812, Springer, Berlin 1980 | MR
[3] R. L. Devaney: An Introduction to Chaotic Dynamical Systems. Second Edition, Addison-Wesley, New York 1989. | MR | Zbl
[4] R. Ito: Rotation sets are closed. Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, pp. 107-111. | MR | Zbl
[5] K. Janková J. Smítal: Characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), no. 2, pp. 283-292. | MR
[6] M. Kuchta J. Smítal: Two point scrambled set implies chaos. in book: European Conference on Iteration Theory, (ECIT 87), World Sci. Publishing Co., Singapore. | MR
[7] T. Y. Li J. A. Yorke: Period three implies chaos. Amer. Math. Monthly 82 (1975), no. 10, pp. 985-992. | MR | Zbl
[8] M. Misiurewicz: Periodic points of maps of degree one of a circle. Ergod. Th. & Dynam. Sys. 2 (1982), no. 2, pp. 221-227. | MR | Zbl
[9] M. Misiurewicz: Twist sets for maps of the circle. Ergod. Th. & Dynam. Sys. 4 (1984), no. 3, pp. 391-404. | MR | Zbl
[10] J. Smítal: Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), no. 1, pp. 269-282. | MR
[11] A. N. Šarkovskii: On cycles and the structure of a continuous mapping. Ukrain. Mat. Ž. 17 (in Russian) (1965), pp. 104-111. | MR