Characterization of chaos for continuous maps of the circle
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 383-390 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A18, 37B99, 37D45, 54H20, 58F13
@article{CMUC_1990_31_2_a20,
     author = {Kuchta, Milan},
     title = {Characterization of chaos for continuous maps of the circle},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--390},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077909},
     zbl = {0728.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a20/}
}
TY  - JOUR
AU  - Kuchta, Milan
TI  - Characterization of chaos for continuous maps of the circle
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 383
EP  - 390
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a20/
LA  - en
ID  - CMUC_1990_31_2_a20
ER  - 
%0 Journal Article
%A Kuchta, Milan
%T Characterization of chaos for continuous maps of the circle
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 383-390
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a20/
%G en
%F CMUC_1990_31_2_a20
Kuchta, Milan. Characterization of chaos for continuous maps of the circle. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 383-390. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a20/

[1] L. Block: Periods of periodic points of maps of the circle which have a fixed point. Proc. Amer. Math. Soc. 82 (1981), no. 3, pp. 481-486. | MR | Zbl

[2] L. Block J. Guckenheimer M. Misiurewicz L. S. Young: Periodic points and topological entropy of one-dimensional maps. in book: Global theory of dynamical systems, (Proc. Internal Conf., Northwestern Univ., Evanston, III., 1979, p. 18-34. Lecture Notes in Math. 812, Springer, Berlin 1980 | MR

[3] R. L. Devaney: An Introduction to Chaotic Dynamical Systems. Second Edition, Addison-Wesley, New York 1989. | MR | Zbl

[4] R. Ito: Rotation sets are closed. Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, pp. 107-111. | MR | Zbl

[5] K. Janková J. Smítal: Characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), no. 2, pp. 283-292. | MR

[6] M. Kuchta J. Smítal: Two point scrambled set implies chaos. in book: European Conference on Iteration Theory, (ECIT 87), World Sci. Publishing Co., Singapore. | MR

[7] T. Y. Li J. A. Yorke: Period three implies chaos. Amer. Math. Monthly 82 (1975), no. 10, pp. 985-992. | MR | Zbl

[8] M. Misiurewicz: Periodic points of maps of degree one of a circle. Ergod. Th. & Dynam. Sys. 2 (1982), no. 2, pp. 221-227. | MR | Zbl

[9] M. Misiurewicz: Twist sets for maps of the circle. Ergod. Th. & Dynam. Sys. 4 (1984), no. 3, pp. 391-404. | MR | Zbl

[10] J. Smítal: Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), no. 1, pp. 269-282. | MR

[11] A. N. Šarkovskii: On cycles and the structure of a continuous mapping. Ukrain. Mat. Ž. 17 (in Russian) (1965), pp. 104-111. | MR