Global branching for discontinuous problems
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 213-222 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B32, 35J60, 35J65, 35R05, 35R35, 82A45, 82D10
@article{CMUC_1990_31_2_a2,
     author = {Ambrosetti, Antonio and Calahorrano, Recalde Marco and Dobarro, Fernando R.},
     title = {Global branching for discontinuous problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {213--222},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077891},
     zbl = {0732.35101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a2/}
}
TY  - JOUR
AU  - Ambrosetti, Antonio
AU  - Calahorrano, Recalde Marco
AU  - Dobarro, Fernando R.
TI  - Global branching for discontinuous problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 213
EP  - 222
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a2/
LA  - en
ID  - CMUC_1990_31_2_a2
ER  - 
%0 Journal Article
%A Ambrosetti, Antonio
%A Calahorrano, Recalde Marco
%A Dobarro, Fernando R.
%T Global branching for discontinuous problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 213-222
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a2/
%G en
%F CMUC_1990_31_2_a2
Ambrosetti, Antonio; Calahorrano, Recalde Marco; Dobarro, Fernando R. Global branching for discontinuous problems. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a2/

[1] A. Ambrosetti M. Badiale: The dual variational principle and elliptic problems with disconiiuous nonlinearities. J . Math. Analysis Appl. 140-2 (1989), 363-373. | MR

[2] A. Ambrosetti M. Calahorrano F. Dobarro: Remarks on the Grad Shafranov equation. Appl. Math. Letters (to appear). | MR

[3] A. Ambrosetti P.Hess: Positive solutions of asymptotically linear elliptic eigenvalue problems. J. Math. Anal. Appl. 73 (1980), 411-422. | MR | Zbl

[4] A. Ambrosetti M. Struwe: Existence of steady vortex rings in an ideal fluid. Arch. Rat. Mech. k Analysis, to appear; and Appl. Math. Letters 2-2 (1989), 183-186. | MR

[5] A. Ambrosetti R. E. L. Turner: Some discontinuous variational problems. Diff. & Integral Equat. 1 (1988), 341-349. | MR

[6] C. J. Amick R. E. L. Turner: A global branch of steady vortex rings. J. Rein. Angew. Math. 384 (1988), 1-23. | MR

[7] K. C. Chang: Variational methods for non-differentiate functionals and their applications to partial differential equations. J. Math. Analysis Appl. 80 (1981), 102-129. | MR

[8] G. Cimatti: A nonlinear elliptic eigenvalue problem for the Elenbaas equation. Boll. U.M.I. 2-B (1979), 555-565. | MR | Zbl

[9] L. E. Fraenkel M. S. Berger: A global theory of steady vortex rings in an ideal fluid. Acta Math. 132 (1974), 13-51. | MR

[10] B. Gidas D. M. Ni L. Nirenberg: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209-243. | MR

[11] D. Lupo: A bifurcation result for a Dirichlet problem with discontinuous nonlinearity. Rend. Circ. Mat. Palermo (to appear). | MR | Zbl

[12] B. Kawohl: Rearrangements and convexity of level sets in PDE. Lect. Notes in Math. 1150, Spriger Verlag, 1985. | MR | Zbl

[13] C. Stuart: Differential equations with discontinuous nonlinearities. Arch. Rat. Mech. Analysis 63 (1976), 59-75. | MR

[14] G. T. Whyburn: Topological Analysis. Princeton Univ. Press, 1958. | MR | Zbl