@article{CMUC_1990_31_2_a17,
author = {Oliveira, Paulo Eduardo},
title = {Invariance principles in $L^2 [0,1]$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {357--366},
year = {1990},
volume = {31},
number = {2},
mrnumber = {1077906},
zbl = {0711.60029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a17/}
}
Oliveira, Paulo Eduardo. Invariance principles in $L^2 [0,1]$. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 357-366. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a17/
[1] Aronszajan N.: The theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404. | MR
[2] Berlinet A.: Espaces autoreproduisants et mesure empirique. Méthodes splines en estimation fonctionnde, These de 3 -$^{ème}$ cycle, Lille, 1980. | Zbl
[3] Billingsley P.: Convergence of Probability Measures. John Wiley & Sons, 1968. | MR | Zbl
[4] Herrndorf N.: The invariance principle for $\varphi$-mixing sequences. no 1, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. | MR
[5] Herrndorf N.: A functional central limit theorem for weakly dependent sequences of random variables. no 1, Ann. Probab. 12 (1984), 141-153. | MR | Zbl
[6] Hida T.: Brownian Motion. Springer-Verlag, 1980. | MR | Zbl
[7] Ibragimov I. A.: Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962), 349-382. | MR | Zbl
[8] Mason D.: Weak convergence of the weighted empirical quantile process in $L^2[0,1]$. no 1, Ann. Probab. 12 (1984), 243-255. | MR
[9] Mori T., Yoshihara K. I.: A note on the central limit theorem for the stationary strongmixing sequences. Yokohama Math. J. 34 (1986), 143-146. | MR
[10] Parthasarathy K. R.: Probability Measures on Metric Spaces. Academic Press, 1967. | MR | Zbl
[11] Peligrad M.: An invariance principle for dependent random variables. no 4, Z. Wahrsch. verw. Gebiete 57 (1981), 495-507. | MR | Zbl
[12] Phillip W.: The central limit problem for mixing sequences of random variables. Z. Wahrsch. verw. Gebiete 12 (1969), 155-171. | MR
[13] Suquet C.: Espaces autoreproduisants et mesures aléatoires. Thése de 3-$^{ème}$ cycle, Lille, 1986.
[14] Volný D.: A central limit theorem for non stationary mixing processes. no 2, Comment. Math. Univ. Carolinae 30 (1989), 405-407. | MR
[15] Withers C. S.: Central limit theorems for dependent variables I. Z. Wahrsch. verw. Gebiete, 57 (1981), n°-4, 509-534; | MR | Zbl
[15b] Withers C. S.: Corrigendum to Central limit theorems for dependent variables I. Z. Wahrsch. verw. Gebiete, 63 (1983), 555. | MR | Zbl