@article{CMUC_1990_31_2_a13,
author = {Weisz, Juraj},
title = {A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {315--322},
year = {1990},
volume = {31},
number = {2},
mrnumber = {1077902},
zbl = {0709.65074},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/}
}
TY - JOUR AU - Weisz, Juraj TI - A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem JO - Commentationes Mathematicae Universitatis Carolinae PY - 1990 SP - 315 EP - 322 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/ LA - en ID - CMUC_1990_31_2_a13 ER -
%0 Journal Article %A Weisz, Juraj %T A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem %J Commentationes Mathematicae Universitatis Carolinae %D 1990 %P 315-322 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/ %G en %F CMUC_1990_31_2_a13
Weisz, Juraj. A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 315-322. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/
[A] Aubin J. P.: Approximation of Elliptic Boundary-Value Problems. New York, London, 1982. | MR
[AB] Aubin J. P., Burchard H.: Some aspects of the method of the hyper-circle applied to elliptic variational problems. Proceedings of SYNSPADE. Academic Press, 1971. | MR
[ET] Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976. | MR | Zbl
[FK] Fučík S., Kufner A.: Nonlinear differential equations. SNTL Prague 1978 (In Czech).
[GGZ] Gajewski H., Groger K., Zacharias K.: Nichtlineare Operator-Gleichungen und Operatordifferentialgleichungen. Akademie -Verlag, Berlin,1974 (Russian Mir Moskva 1978).
[HH] Haslinger J., Hlaváček I.: Convergence of a finite element method based on the dual variational formulation. Apl. Mat. 21 (1976), 43-55. | MR
[H] Hlaváček I.: The density of solenoidal functions and the convergence of a dual finite element method. Apl. Mat. 25 (1980), 39-55. | MR
[HK] Hlaváček I., Křížek M.: Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984), 52-69. | MR
[K] Kodnár R.: Aposteriori estimates of approximate solutions for some types of boundary value problems. Proceedings of Equadiff 6, Brno 1985.
[KR] Křížek M.: Conforming equilibrium finite element methods for some elliptic plane problems. RAIRO Anal. Numer. 17 (1983), 35-65. | MR
[V] Vacek J.: Dual variational principles for an elliptic partial differential equation. Apl. Mat. 21 (1976), 5-27. | MR | Zbl