A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 315-322 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J65, 65G99, 65N15
@article{CMUC_1990_31_2_a13,
     author = {Weisz, Juraj},
     title = {A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--322},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077902},
     zbl = {0709.65074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/}
}
TY  - JOUR
AU  - Weisz, Juraj
TI  - A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 315
EP  - 322
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/
LA  - en
ID  - CMUC_1990_31_2_a13
ER  - 
%0 Journal Article
%A Weisz, Juraj
%T A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 315-322
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/
%G en
%F CMUC_1990_31_2_a13
Weisz, Juraj. A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 315-322. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a13/

[A] Aubin J. P.: Approximation of Elliptic Boundary-Value Problems. New York, London, 1982. | MR

[AB] Aubin J. P., Burchard H.: Some aspects of the method of the hyper-circle applied to elliptic variational problems. Proceedings of SYNSPADE. Academic Press, 1971. | MR

[ET] Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976. | MR | Zbl

[FK] Fučík S., Kufner A.: Nonlinear differential equations. SNTL Prague 1978 (In Czech).

[GGZ] Gajewski H., Groger K., Zacharias K.: Nichtlineare Operator-Gleichungen und Operatordifferentialgleichungen. Akademie -Verlag, Berlin,1974 (Russian Mir Moskva 1978).

[HH] Haslinger J., Hlaváček I.: Convergence of a finite element method based on the dual variational formulation. Apl. Mat. 21 (1976), 43-55. | MR

[H] Hlaváček I.: The density of solenoidal functions and the convergence of a dual finite element method. Apl. Mat. 25 (1980), 39-55. | MR

[HK] Hlaváček I., Křížek M.: Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984), 52-69. | MR

[K] Kodnár R.: Aposteriori estimates of approximate solutions for some types of boundary value problems. Proceedings of Equadiff 6, Brno 1985.

[KR] Křížek M.: Conforming equilibrium finite element methods for some elliptic plane problems. RAIRO Anal. Numer. 17 (1983), 35-65. | MR

[V] Vacek J.: Dual variational principles for an elliptic partial differential equation. Apl. Mat. 21 (1976), 5-27. | MR | Zbl