Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 283-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34G20, 35A05, 35A07, 35B40, 35G25, 35K22, 47H20, 58F12, 58F39
@article{CMUC_1990_31_2_a10,
     author = {\v{S}ev\v{c}ovi\v{c}, Daniel},
     title = {Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {283--293},
     year = {1990},
     volume = {31},
     number = {2},
     mrnumber = {1077899},
     zbl = {0732.35016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/}
}
TY  - JOUR
AU  - Ševčovič, Daniel
TI  - Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 283
EP  - 293
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/
LA  - en
ID  - CMUC_1990_31_2_a10
ER  - 
%0 Journal Article
%A Ševčovič, Daniel
%T Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 283-293
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/
%G en
%F CMUC_1990_31_2_a10
Ševčovič, Daniel. Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/

[1] A. B. Бабин M. H. Bишик: Aттpaктopы эвoлюциoнных ypавнeний c чaстными пpoизводными и оценки их размеpности. Уcпeхи мат. наук 38 (1983), 133-185.

[2] J. Ball: Stability theory for an extensible beam. J. Diff. Equations 14 (1973), 399-418. | MR | Zbl

[3] P. Biller: Exponential decay of solutions of damped nonlinear hyperbolic equations. No. 7, Nonlinear analysis 11 (1987), 841-849. | MR

[4] J. E. Billoti J. P. LaSalle: Dissipative periodic processes. Bull. Amer. Math. Soc. 6 (1971), 1082-1089. | MR

[5] W. E. Fitzgibbon: Strongly damped quasilinear Evolution equations. J. of Math. Anal, and Appl. 79 (1981), 536-550. | MR | Zbl

[6] J. M. Ghidaglia, R. Temam: Attractors for Damved Nonlinear Hyperbolic Equations. J. de Math. Pures et Appl. 79 (1987), 273-319. | MR

[7] J. K. Hale N. Stavrakakis: Limiting behavior of Linearly damped Hyperbolic equations. Preprint, Brown - University, jan. 1986.

[8] D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Math., 840, Berlin: Springer Verlag, 1981. | MR | Zbl

[9] P. Massat: Attractivity properties of $\alpha$-contractions. J. of Diff. Equations 48 (1983), 326-333. | MR

[10] P. Massat: Limiting behavior for strongly damped nonlinear wave equations. J. of Diff. Equations 48 (1983), 334-349. | MR

[11] G. F. Webb: Existence and asymptotic behavior for a strongly damped nonlinear wave equations. Canad. J. of Math. 32 (1980), 631-643. | MR