@article{CMUC_1990_31_2_a10,
author = {\v{S}ev\v{c}ovi\v{c}, Daniel},
title = {Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {283--293},
year = {1990},
volume = {31},
number = {2},
mrnumber = {1077899},
zbl = {0732.35016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/}
}
TY - JOUR AU - Ševčovič, Daniel TI - Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms JO - Commentationes Mathematicae Universitatis Carolinae PY - 1990 SP - 283 EP - 293 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/ LA - en ID - CMUC_1990_31_2_a10 ER -
%0 Journal Article %A Ševčovič, Daniel %T Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms %J Commentationes Mathematicae Universitatis Carolinae %D 1990 %P 283-293 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/ %G en %F CMUC_1990_31_2_a10
Ševčovič, Daniel. Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/CMUC_1990_31_2_a10/
[1] A. B. Бабин M. H. Bишик: Aттpaктopы эвoлюциoнных ypавнeний c чaстными пpoизводными и оценки их размеpности. Уcпeхи мат. наук 38 (1983), 133-185.
[2] J. Ball: Stability theory for an extensible beam. J. Diff. Equations 14 (1973), 399-418. | MR | Zbl
[3] P. Biller: Exponential decay of solutions of damped nonlinear hyperbolic equations. No. 7, Nonlinear analysis 11 (1987), 841-849. | MR
[4] J. E. Billoti J. P. LaSalle: Dissipative periodic processes. Bull. Amer. Math. Soc. 6 (1971), 1082-1089. | MR
[5] W. E. Fitzgibbon: Strongly damped quasilinear Evolution equations. J. of Math. Anal, and Appl. 79 (1981), 536-550. | MR | Zbl
[6] J. M. Ghidaglia, R. Temam: Attractors for Damved Nonlinear Hyperbolic Equations. J. de Math. Pures et Appl. 79 (1987), 273-319. | MR
[7] J. K. Hale N. Stavrakakis: Limiting behavior of Linearly damped Hyperbolic equations. Preprint, Brown - University, jan. 1986.
[8] D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Math., 840, Berlin: Springer Verlag, 1981. | MR | Zbl
[9] P. Massat: Attractivity properties of $\alpha$-contractions. J. of Diff. Equations 48 (1983), 326-333. | MR
[10] P. Massat: Limiting behavior for strongly damped nonlinear wave equations. J. of Diff. Equations 48 (1983), 334-349. | MR
[11] G. F. Webb: Existence and asymptotic behavior for a strongly damped nonlinear wave equations. Canad. J. of Math. 32 (1980), 631-643. | MR