@article{CMUC_1990_31_1_a9,
author = {Koubek, V\'aclav},
title = {Finite-to-finite universal varieties of distributive double $p$-algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {67--83},
year = {1990},
volume = {31},
number = {1},
mrnumber = {1056172},
zbl = {0714.18003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_1_a9/}
}
Koubek, Václav. Finite-to-finite universal varieties of distributive double $p$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 1, pp. 67-83. http://geodesic.mathdoc.fr/item/CMUC_1990_31_1_a9/
[1] M. E. Adams V. Koubek J. Sichler: Homomorphisms and endomorphisms of distributive lattices. Houston J. Math. 11 (1985), 129-146. | MR
[2] M. E. Adams J. Sichler: Endomorphism monoids of distributive double p-algebras. Glasgow Math. J. 20 (1979), 81-86. | MR
[3] R. Beazer: The determination congruence on double p-algebras. Alg. Universalis 6 (1976), 121-129. | MR | Zbl
[4] B. A. Davey: Subdirectly irreducible distributive double p-algebras. Alg. Universalis 8 (1978), 73-88. | MR | Zbl
[5] B. A. Davey D. Duffus: Exponentiation and duality, Ordered Sets. NATO Advanced Study Institutes Series 83, D. Reidel Publishing Company, Dordrecht, Holland, 1982. | MR
[6] P. Goralčík V. Koubek J. Sichler: Universal varieties of $(0,1)$-lattices. to appear in Canad. Math. J. | MR
[7] G. Grätzer: General Lattice Theory. Academic Press, New York, San Francisco, 1978. | MR
[8] B. Jónsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121. | MR
[9] V. Koubek: Infinite image homomorphisms of distributive bounded lattices. in proc. Colloquia Math. Soc. János Bolayi, 43. Lectures in Universal Algebra, Szeged 1983, North Holland 1985. | MR
[10] V. Koubek J. Sichler: Universal varieties of distributive double $p$-algebras. Glasgow Math. J. 20 (1985), 121-131. | MR
[11] V. Koubek J. Sichler: Categorical universality of regular double $p$-algebras. to appear in Glasgow Math. J. | MR
[12] V. Koubek J. Sichler: Universal finitely generated varieties of distributive double p-algebras.
[13] H. A. Priestley: Representation of distributive lattices by means of order Stone spaces. Bull. London Math. Soc. 2 (1970), 186-190. | MR
[14] H. A. Priestley: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (1972), 507-530. | MR | Zbl
[15] H. A. Priestley: The construction of spaces dual to pseudocomplemented distributive lattices. Quart. J. Math. Oxford 26 (1975), 215-228. | MR | Zbl
[16] H. A. Priestley: Ordered sets and duality for distributive lattices. Ann Discrete Math. 23 (1984), 36-90. | MR | Zbl
[17] A. Pultr V. Trnková: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. | MR