A note on nowhere dense sets in $\omega^\ast$
Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 1, pp. 145-147 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03E05, 04A20, 54D40, 54G05
@article{CMUC_1990_31_1_a18,
     author = {Simon, Petr},
     title = {A note on nowhere dense sets in $\omega^\ast$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {145--147},
     year = {1990},
     volume = {31},
     number = {1},
     mrnumber = {1056181},
     zbl = {0696.54019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1990_31_1_a18/}
}
TY  - JOUR
AU  - Simon, Petr
TI  - A note on nowhere dense sets in $\omega^\ast$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1990
SP  - 145
EP  - 147
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1990_31_1_a18/
LA  - en
ID  - CMUC_1990_31_1_a18
ER  - 
%0 Journal Article
%A Simon, Petr
%T A note on nowhere dense sets in $\omega^\ast$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1990
%P 145-147
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1990_31_1_a18/
%G en
%F CMUC_1990_31_1_a18
Simon, Petr. A note on nowhere dense sets in $\omega^\ast$. Commentationes Mathematicae Universitatis Carolinae, Tome 31 (1990) no. 1, pp. 145-147. http://geodesic.mathdoc.fr/item/CMUC_1990_31_1_a18/

[BDS] B. Balcar J. Dočkálková P. Simon: Almost disjoint families of countable sets. Finite and Infinite Sets, Eger, Colloq. Math. Soc. Janos Boiyai 37 (1981), 59-88. | MR

[BS] B. Balcar P. Simon: Disjoint refinement. Handbook of Boolean Algebras, North Holland Publ. Co. 1989, 335-386. | MR

[BV] B. Balcar P. Vojtáš: Almost disjoint refinement of families of subsets of N. Proc. Amer. Math. Soc. 79 (1980), 465-470. | MR

[He] S. H. Hechler: Generalizations of almost-disjointness, c-sets, and the Baire number of $\beta N - N$. Gen. Top. and its Appl. 8 (1978), 93-110. | MR

[Ma] V. I. Malykhin: Personal communication. | Zbl