@article{CMUC_1989_30_4_a23,
author = {K\^ozaki, Masanori and Sumi, Hidekichi},
title = {On normal forms of {Laplacian} and its iterations in harmonic spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {795--802},
year = {1989},
volume = {30},
number = {4},
mrnumber = {1045912},
zbl = {0694.53036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_4_a23/}
}
TY - JOUR AU - Kôzaki, Masanori AU - Sumi, Hidekichi TI - On normal forms of Laplacian and its iterations in harmonic spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1989 SP - 795 EP - 802 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1989_30_4_a23/ LA - en ID - CMUC_1989_30_4_a23 ER -
Kôzaki, Masanori; Sumi, Hidekichi. On normal forms of Laplacian and its iterations in harmonic spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 4, pp. 795-802. http://geodesic.mathdoc.fr/item/CMUC_1989_30_4_a23/
[1] Besse A. L.: Manifolds all of whose Geodesies are Closed. Springer-Verlag, Berlin Heidelberg New York, 1978. | MR
[2] Gray A., Willmore T. J.: Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh 92 A (1982), 343-364. | MR | Zbl
[3] Kowalski O.: The second mean-value operator on Riemannian manifolds. in Proceedings of the CSSR-GDR-Polish Conference on Differential Geometry and its Applications, Nové Město 1980, pp. 33-45, Universita Karlova Praha, 1982. | MR
[4] Kowalski O.: Normal forms of the Laplacian and its iterations in the symmetric spaces of rank one. Simon Stevin, Quart. J. Pure. Applied Math. 57 (1983), 215-223. | MR | Zbl
[5] Kôzaki M.: On mean value theorems for small geodesic spheres in Riemannian manifolds. preprint. | MR
[6] Kôzaki M., Ogura Y.: On geometric and stochastic mean values for small geodesic spheres in Riemannian manifolds. Tsukuba J. Math. 11 (1987), 131-145. | MR
[7] Ruse H. S., Walker A. G., Willmore T. J.: Harmonic Spaces. Edizioni Cremonese, Roma, 1961. | MR | Zbl
[8] Watanabe Y.: On the characteristic function of harmonic Kählerian spaces. Tohoku Math. J. 27 (1975), 12-24. | MR | Zbl