On $L_\infty$-convergence of Rothe's method
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 3, pp. 505-510
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1989_30_3_a9,
author = {Ka\v{c}ur, Jozef},
title = {On $L_\infty$-convergence of {Rothe's} method},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {505--510},
year = {1989},
volume = {30},
number = {3},
mrnumber = {1031868},
zbl = {0689.65069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a9/}
}
Kačur, Jozef. On $L_\infty$-convergence of Rothe's method. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 3, pp. 505-510. http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a9/
[1] Grossmann Ch., Krätzschmar M., Roos H.-G.: Gleichmässig einschliessende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgeben. Numeriache Mathematik 49 (1988), 98-110. | MR
[2] Koeppe G., Roos H.-G., Tobiska L.: An enclosure generating modification of the method of discretisation in time. Comment. Math. Univ. Carolinae 28 (1987), 441-447. | MR
[3] Kačur J.: Method of Rothe in evolution equations. Teubner-Texte zur Mathematik 80, Leipzig, 1988. | MR
[4] Nečas J.: Les méthodes directes en theórie des équations elliptiques. Academia, Prague, 1987.
[5] Rektorys K.: The method of discretisation in time and partial differential equations. Reidel Publishing Company, Dordrecht - Boston - London, 1982. | MR