@article{CMUC_1989_30_3_a15,
author = {Quittner, Pavol},
title = {On positive solutions of semilinear elliptic problems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {579--585},
year = {1989},
volume = {30},
number = {3},
mrnumber = {1031874},
zbl = {0698.35057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a15/}
}
Quittner, Pavol. On positive solutions of semilinear elliptic problems. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 3, pp. 579-585. http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a15/
[1] Brézis H.: Problèmes unilatéraux. J. Math, pures et appl. 51 (1972), 1-168. | MR
[2] Brézis H., Turner R. E. L.: On a class of supcrlincar elliptic problems. Comm. in P. D. E. 2 (1977), 601-814. | MR
[3] Castro A.: Non-negative solutions for non-positone problems. ICTP preprint SMR 281/16.
[4] Crandall M. G., Rabinowitz P. H.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rational Mech. Anal. 58 (1975), 207-218. | MR | Zbl
[5] De Figueiredo D. G.: Positive solutions of semilinear elliptic problems. In Differential equations, Springer Lecture Notes 957 (1982). | MR | Zbl
[6] Lions P.-L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Review 24 (1982), 441-467. | MR | Zbl
[7] Ramaswamy M.: On the global set of solutions of a nonlinear ODE: theoretical and numerical description. J. Diff. Equations 65 (1986), 1-48. | MR | Zbl
[8] Smoller J., Wasserman A.: Existence of positive solutions for semilinear elliptic equations in general domains. Arch. Rational Mech. Anal. 98 (1987), 229-249. | MR | Zbl
[9] Szulkin A.: Minimax principles for lower semi continuous functions and applications to nonlinear boundary value problems. Ann. Inst. Henri Poincaré 3 (1986), 77-109. | MR