Landesman-Lazer conditions for strongly nonlinear boundary value problems
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 3, pp. 411-427 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35D05, 35J25, 35J35, 35J65, 35J70, 47H15, 55M25
@article{CMUC_1989_30_3_a0,
     author = {Boccardo, Lucio and Dr\'abek, Pavel and Ku\v{c}era, Milan},
     title = {Landesman-Lazer conditions for strongly nonlinear boundary value problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {411--427},
     year = {1989},
     volume = {30},
     number = {3},
     mrnumber = {1031859},
     zbl = {0706.35051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a0/}
}
TY  - JOUR
AU  - Boccardo, Lucio
AU  - Drábek, Pavel
AU  - Kučera, Milan
TI  - Landesman-Lazer conditions for strongly nonlinear boundary value problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1989
SP  - 411
EP  - 427
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a0/
LA  - en
ID  - CMUC_1989_30_3_a0
ER  - 
%0 Journal Article
%A Boccardo, Lucio
%A Drábek, Pavel
%A Kučera, Milan
%T Landesman-Lazer conditions for strongly nonlinear boundary value problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1989
%P 411-427
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a0/
%G en
%F CMUC_1989_30_3_a0
Boccardo, Lucio; Drábek, Pavel; Kučera, Milan. Landesman-Lazer conditions for strongly nonlinear boundary value problems. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 3, pp. 411-427. http://geodesic.mathdoc.fr/item/CMUC_1989_30_3_a0/

[1] Ahmad S.: Nonselfadjoint resonance problems with unbounded perturbations. Nonlinear Analysis T.M.A. 10 (1986), 147-156. | MR | Zbl

[2] Ahmad S.: A resonance problem in which the nonlinearity may grow linearly. Proc. Amer. Math. Society 93 (1984), 381-384. | MR

[3] Anane A.: Simplicate et isolation de la premiere valeur propre du p-Laplacien avec poids. C.R. Acad. Sci. Paris 305 1 (1987), 725-728. | MR

[4] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Analysis T.M.A. 10 (1986), 1083-1103. | MR

[5] Drábek P.: On the resonance problem with nonlinearity which has arbitrary linear growth. J. Math. Analysis. Appl. 127 (1987), 435-442. | MR

[6] Fučík S., Nečas J., Souček J., Souček V.: Spectral Analysis of Nonlinear Operators. Lecture Notes in Math. 346, Springer, Berlin, 1973. | MR

[7] Landesman E. M., Lazer A. C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623. | MR | Zbl

[8] Lions J. L.: Qulques méthodes de résolution de problemes aux limites nonlinéaires. Dunod Gauthier - Villars, Paris, 1969. | MR

[9] Llibourty L.: Traite de Glaceologie. Masson and Lie, Paris (I) 1964 et (II) 1965.

[10] Péllisier M. C., Reynand L.: Étude d'un modéle mathématique d'écoulement de glacier. C.R. Acad. Sci. Paris 279 (1979), 531-534.

[11] Tolksdorf P.: Regularity of a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150. | MR

[12] Anane A., Gossez J. P.: Strongly nonlinear elliptic problems near resonance: a variational approach. preprint. | MR | Zbl