Solvability and multiplicity results for variational inequalities
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 281-302 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H19, 49A29, 49J40
@article{CMUC_1989_30_2_a9,
     author = {Quittner, Pavol},
     title = {Solvability and multiplicity results for variational inequalities},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {281--302},
     year = {1989},
     volume = {30},
     number = {2},
     mrnumber = {1014128},
     zbl = {0698.49004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a9/}
}
TY  - JOUR
AU  - Quittner, Pavol
TI  - Solvability and multiplicity results for variational inequalities
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1989
SP  - 281
EP  - 302
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a9/
LA  - en
ID  - CMUC_1989_30_2_a9
ER  - 
%0 Journal Article
%A Quittner, Pavol
%T Solvability and multiplicity results for variational inequalities
%J Commentationes Mathematicae Universitatis Carolinae
%D 1989
%P 281-302
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a9/
%G en
%F CMUC_1989_30_2_a9
Quittner, Pavol. Solvability and multiplicity results for variational inequalities. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 281-302. http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a9/

[1] Drábek P., Kučera M., Míková M.: Bifurcation points of reaction-diffusion system with unilateral conditions. Czechoslovak Math. J. 35 (1985), 639-660. | MR

[2] Drábek P., Kučera M.: Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions. Czechoslovak Math. J. 36 (1986), 116-130. | MR

[3] Kinderlehrer D., Stampacchia G.: An introduction to variational inequalities and their applications. Academic Press, New York, 1980. | MR | Zbl

[4] Kučera M.: A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory. Čas. Pěst. mat. 104 (1979), 389-411. | MR

[5] Kučera M.: A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues. Czechoslovak Math. J. 32 (1982), 197-207. | MR

[6] Kučera M.: Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (1982), 208-226. | MR

[7] Miersemann E.: Über höhere Verzweigunuspunkte nichtlinearer Variationsungleichungen. Math. Nachr. 85 (1978), 195-213. | MR

[8] Miersemann E.: Höhere Eigenwerte von Variationsungleichungen. Beiträge zur Analysis 17 (1981), 65-68. | MR | Zbl

[9] Miersemann E.: On higher eigenvalues of variational inequalities. Comment. Math. Univ. Carol. 24 (1983), 657-665. | MR | Zbl

[10] Quittner P.: A note to E. Miersemann's papers on higher eigenvalues of variational inequalities. Comment. Math. Univ. Carol. 26 (1985), 665-674. | MR

[11] Quittner P.: Spectral analysis of variational inequalities. Comment. Math. Univ. Carol. 27, 3 (1986), 605-629. | MR

[12] Quittner P.: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. reine angew. Math 380 (1987), 1-13. | MR | Zbl

[13] Quittner P.: Spectral analysis of variational inequalities. Thesis, Praha, 1986. | MR

[14] Švarc R.: The solution of a Fučík's conjecture. Comment. Math. Univ. Carol. 25 (1984), 483-517. | MR | Zbl

[15] Švarc R.: The operators with jumping nonlinearities and combinatorics. Preprint. | MR

[16] Švarc R.: Some combinatorial results about the operators with jumping nonlinearities. Preprint. | MR

[17] Szulkin A.: On a class of variational inequalities involving gradient operators. J. Math. Anal. Appl. 100 (1984), 486-499. | MR | Zbl

[18] Szulkin A.: Positive solutions of variational inequalities: a degree-theoretic approach. J. Dif. Equations 57 (1985), 90-111. | MR | Zbl

[19] Szulkin A.: A noncoercive elliptic variational inequality. In "Nonlinear functional analysis and its applications", Proceedings of symposia in pure mathematics 45 (1986), 413-418. | MR

[20] Rabinowitz P. H.: A global theorem for nonlinear eigenvalue problems and applications. In "Contributions to nonlinear functional analysis", ed. E. H. Zarantonello, Academic Press, New York - London, 1971. | MR | Zbl

[21] Nirenberg L.: Topics in nonlinear functional analysis. Academic Press, New York - San Francisco - London, 1977. | MR | Zbl