On natural connections on Riemannian manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 389-393
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1989_30_2_a20,
author = {Slov\'ak, Jan},
title = {On natural connections on {Riemannian} manifolds},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {389--393},
year = {1989},
volume = {30},
number = {2},
mrnumber = {1014139},
zbl = {0679.53025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a20/}
}
Slovák, Jan. On natural connections on Riemannian manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 389-393. http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a20/
[1] Epstein D. B.: Natural tensors on Riemannian manifolds. J. Differential Geom. 10 (1975), 631-645. | MR | Zbl
[2] Krupka D., Mikolášová V.: On the uniqueness of some differential invariants: $d, [ , ], {\nabla}$. Czechoslovak Mathematical Journal 34 (109) (1984), 588-597. | MR
[3] Mikulski W. M.: Classification theorem for F-metrices. to appear.
[4] Nijenhuis A.: Natural bundles and their general properties. in "Differential Geometry, in honour of K. Yano," Tokio, 1972, pp. 317-334. | MR | Zbl