On the $Hp$-theorem for hypersurfaces
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 385-387
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1989_30_2_a19,
author = {Rotondaro, Giovanni},
title = {On the $Hp$-theorem for hypersurfaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {385--387},
year = {1989},
volume = {30},
number = {2},
mrnumber = {1014138},
zbl = {0678.53004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a19/}
}
Rotondaro, Giovanni. On the $Hp$-theorem for hypersurfaces. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 385-387. http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a19/
[1] Rotondaro G.: An integral formula for closed surfaces and a generalization of Hp-theorem. Comment. Math. Univ. Carolinae 29 (1988), 253-254. | MR | Zbl
[2] Schneider R.: Eine Kennzeichnung der Kugel. Arch. Math. 16 (1965), 235-239. | MR | Zbl
[3] Spivak M.: A comprehensive Introduction to Differential Geometry. vol. IV, V, Publish or Perish, Inc., Berkeley, 1979. | MR | Zbl
[4] Švec A.: On the $f(H,K)p$-theorem. Comment. Math. Univ. Carolinae 17 (1976), 1-5. | MR