On Baire approximations of normal integrands
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 373-376 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A20, 54C30, 54C50
@article{CMUC_1989_30_2_a17,
     author = {Kucia, Anna and Nowak, Andrzej},
     title = {On {Baire} approximations of normal integrands},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {373--376},
     year = {1989},
     volume = {30},
     number = {2},
     mrnumber = {1014136},
     zbl = {0685.28001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a17/}
}
TY  - JOUR
AU  - Kucia, Anna
AU  - Nowak, Andrzej
TI  - On Baire approximations of normal integrands
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1989
SP  - 373
EP  - 376
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a17/
LA  - en
ID  - CMUC_1989_30_2_a17
ER  - 
%0 Journal Article
%A Kucia, Anna
%A Nowak, Andrzej
%T On Baire approximations of normal integrands
%J Commentationes Mathematicae Universitatis Carolinae
%D 1989
%P 373-376
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a17/
%G en
%F CMUC_1989_30_2_a17
Kucia, Anna; Nowak, Andrzej. On Baire approximations of normal integrands. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 373-376. http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a17/

[1] Ash R. B.: Real Analysis and Probability. Academic Press, New York, 1972. | MR

[2] Christensen J. P. R.: Topology and Borel Structure. North Holland, Amsterdam, 1974. | MR | Zbl

[3] Dynkin E. B.: Stochastic concave dynamic programming. Mat. Sb. 87 (1972), 490-503; English transl.: Math. USSR-Sb. 16 (1972), 501-515. | MR

[4] Kucia A.: Carathéodory type selectors. submitted. | Zbl

[5] Miller D. E.: Borel selectors for separated quotients. Pacific J. Math. 91 (1980), 187-198. | MR | Zbl

[6] Sarbadhikari H., Srivastava S. M.: Random Tietze and Dugundji extension theorems. J. Math. Anal. Appl. (to appear).

[7] Schäl M.: A selection theorem for optimization problems. Arch. Math. 25 (1974), 219-224. | MR

[8] Schäl M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z. Wahrsch. Verw. Gebiete 32 (1975), 179-196. | MR

[9] Schäl M.: On dynamic programming: compactness of the space of policies. Stochastic Process. Appl. 3 (1975), 345-364. | MR

[10] Schäl M.: Addendum to [7], [8] and [9]. Technical Report, Univ. Bonn, 1977.

[11] Ślęzak W.: On Carathéodory's selectors for multifunctions with values in S-contractible spaces. Problemy Math. 7 (1986), 21-34. | MR | Zbl

[12] Wagner D. H.: Survey of measurable selection theorems. SIAM J. Control 15 (1977), 859-903. | MR | Zbl