Five equivalent theorems on a convex subset of a topological vector space
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 323-326 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A55, 47H10
@article{CMUC_1989_30_2_a13,
     author = {Tarafdar, Enayat},
     title = {Five equivalent theorems on a convex subset of a topological vector space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {323--326},
     year = {1989},
     volume = {30},
     number = {2},
     mrnumber = {1014132},
     zbl = {0681.47029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a13/}
}
TY  - JOUR
AU  - Tarafdar, Enayat
TI  - Five equivalent theorems on a convex subset of a topological vector space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1989
SP  - 323
EP  - 326
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a13/
LA  - en
ID  - CMUC_1989_30_2_a13
ER  - 
%0 Journal Article
%A Tarafdar, Enayat
%T Five equivalent theorems on a convex subset of a topological vector space
%J Commentationes Mathematicae Universitatis Carolinae
%D 1989
%P 323-326
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a13/
%G en
%F CMUC_1989_30_2_a13
Tarafdar, Enayat. Five equivalent theorems on a convex subset of a topological vector space. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 2, pp. 323-326. http://geodesic.mathdoc.fr/item/CMUC_1989_30_2_a13/

[1] Allen G.: Variational inequalities, complementarity problems, and duality theorems. J. Math. Anal. Appl. 58 (1977), 1-10. | MR | Zbl

[2] Fan K.: A minimax inequality and applications, Inequalities. Vol III, (Ed. O. Shisha), New York, London, Academic Press 13, 1972, pp. 103-113. | MR

[3] Fan K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984), 519-537. | MR | Zbl

[4] Knaster B., Kuratowski C, Mazurkiewicz S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fund. Math. 14 (1929), 132-137.

[5] Lin T. C.: Convex sets, fixed points, variational and minimax inequalities. Bull. Austral. Math. Soc. 34 (1986), 107-117. | MR | Zbl

[6] Tarafdar E.: A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewic's theorem. J. Math. Anal. Appl. 128 (1987), 475-479. | MR

[7] Tarafdar E.: On nonlinear variational inequalities. Proc. Amer. Math. Soc. 67 (1977), 95-98. | MR | Zbl

[8] Tarafdar E.: Variational problems via a fixed point theorem. Indian Journal of Mathematics 28 (1986), 229-240. | MR | Zbl