@article{CMUC_1989_30_1_a9,
author = {Kowalski, Old\v{r}ich},
title = {A note to a theorem by {K.} {Sekigawa}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {85--88},
year = {1989},
volume = {30},
number = {1},
mrnumber = {995705},
zbl = {0679.53043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a9/}
}
Kowalski, Oldřich. A note to a theorem by K. Sekigawa. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a9/
[1] Ambrose W., Singer I. M.: On homogeneous Riemannian manifolds. Duke Math. J. 25 (1958), 647-669. | MR | Zbl
[2] Kobayashi S., Nomizu K.: Foundations of Differential Geometry I. Interecience Publishers, New York, 1963. | MR | Zbl
[3] Sekigawa K.: On the Riemannian manifolds of the form $B X_f F$. Kodai Math. Sem. Rep. 26 (1975), 343-347. | MR
[4] Sekigawa K.: On some 3-dimensional curvature homogeneous spaces. Tensor, N.S. 31 (1977), 87-97. | MR | Zbl
[5] Singer I. M.: Infmitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697 | MR
[6] Takagi H.: On curvature homogeneity of Riemannian manifolds. Tohoku Math. J. 26 (1974), 581-585. | MR | Zbl
[7] Takagi H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tohoku Math. J. 27 (1975), 103-110. | MR | Zbl
[8] Tricerri F., Vanhecke L.: Homogeneous Structures on Riemannian Manifolds. London Math. Society Lecture Note Series, Vol. 83, Cambridge University Press, 1983. | MR | Zbl