@article{CMUC_1989_30_1_a5,
author = {Slodi\v{c}ka, Mari\'an},
title = {Application of {Rothe's} method to evolution integrodifferential systems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {57--70},
year = {1989},
volume = {30},
number = {1},
mrnumber = {995701},
zbl = {0674.65110},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a5/}
}
Slodička, Marián. Application of Rothe's method to evolution integrodifferential systems. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 1, pp. 57-70. http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a5/
[1] Bermudez A., Viaño J. M.: Etude de deux schemas numériques pour les équations de la thermoélasticité. RAIRO Anal. numérique 17 (1983), 121-136. | MR
[2] Dafermos C. M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rat. Mech. Anal. 29 (1968), 241-271. | MR | Zbl
[3] Duvaut G., Lions J. L.: Inéquations en thermoelasticite et magnetohydrodynamique. Arch. Rat. Mech. Anal. 46 (1972), 241-279. | MR | Zbl
[4] Chou S. I., Wang C. C.: Estimates of error in finite element approximate solutions to problems in linear thermoelasticity. Part 1. Computationally coupled numerical schemes. Arch. Rat. Mech. Anal. 76 (1981), 263-299. | MR
[5] Gajewski H., Gröger K., Zacharias K.: Nichtiineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.
[6] Kačur J.: Method of Rothe in evolution equations. Teubner Texte zur Mathematik, 80, Leipzig, 1985. | MR
[7] Kačur J.: Application of Rothe's method to evolution integrodifferential equations. J. reine angew. Math. 388 (1988), 73-105. | MR | Zbl
[8] Kačur J., Ženíšek A.: Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems. Aplikace matematiky 31 (1986), 190-223. | MR
[9] Kufner R. E., John O., Fučík S.: Function spaces. Academia, Prague, 1977.
[10] Nickell R. E., Sackman J. L.: Approximate solutions in linear coupled thermoelasticity. J. Appl. Mech. 35 (1968), 255-266. | Zbl
[11] Nickell R. E., Sackman J. L.: Variational principles for linear coupled thermoelasticity. Q. Appl. Math. 26 (1968), 11-26. | MR | Zbl
[12] Rektorys K.: The method of discretization in time and partial differential equations. D. Reidel Publ. Co 1982, Dordrecht - Boston - London. | MR | Zbl
[13] Ženíšek A.: Finite element methods for coupled thermoelasticity and coupled consolidation of clay. RAIRO Anal. numerique 18 (1984), 183-205. | MR