Some new results on accretive multivalued operators
Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 1, pp. 45-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46B20, 47H06
@article{CMUC_1989_30_1_a4,
     author = {Vesel\'y, Libor},
     title = {Some new results on accretive multivalued operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {45--55},
     year = {1989},
     volume = {30},
     number = {1},
     mrnumber = {995700},
     zbl = {0665.47036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a4/}
}
TY  - JOUR
AU  - Veselý, Libor
TI  - Some new results on accretive multivalued operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1989
SP  - 45
EP  - 55
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a4/
LA  - en
ID  - CMUC_1989_30_1_a4
ER  - 
%0 Journal Article
%A Veselý, Libor
%T Some new results on accretive multivalued operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1989
%P 45-55
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a4/
%G en
%F CMUC_1989_30_1_a4
Veselý, Libor. Some new results on accretive multivalued operators. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a4/

[1] Cudia D. F.: The geometry of Banach spaces. Smoothness. Trans. Amer. Math. Soc. 110 (1964), 284-314. | MR | Zbl

[2] Giles J. R.: On the characterization of Asplund spaces. J. Austral. Math. Soc. (Ser.A) 32 (1982), 134-144. | MR

[3] Kato T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967), 508- 520. | MR | Zbl

[4] Kenderov P. S.: Monotone operators in Asplund spaces. C.R. Acad. Bulgare Sci 30 (1977), 963-964. | MR | Zbl

[5] Kolomý J.: Maximal monotone and accretive multivalued mappings and structure of Banach spaces. Function spaces, Proc. Int. Conf. Poznań 1986, Teubner-Texte zur Math. 103 (1988), 170-177. | MR

[6] Kolomý J.: Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91 (1984), 202-204. | MR

[7] Preiss D., Zajíček L.: Stronger estimates of smallness of sets of Fréchet nondtfferentiability of convex functions. Proceedings of the 11-th Winter School, Supplement Rend. Circ. Mat. Palermo (Ser. II) (1984). | MR

[8] Zajíček L.: Sets of $\sigma $-porosity and sets of $\sigma $-porosity$(q)$. Čas. Pěst. Mat. 101 (1976), 350-359. | MR | Zbl