@article{CMUC_1989_30_1_a4,
author = {Vesel\'y, Libor},
title = {Some new results on accretive multivalued operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {45--55},
year = {1989},
volume = {30},
number = {1},
mrnumber = {995700},
zbl = {0665.47036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a4/}
}
Veselý, Libor. Some new results on accretive multivalued operators. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a4/
[1] Cudia D. F.: The geometry of Banach spaces. Smoothness. Trans. Amer. Math. Soc. 110 (1964), 284-314. | MR | Zbl
[2] Giles J. R.: On the characterization of Asplund spaces. J. Austral. Math. Soc. (Ser.A) 32 (1982), 134-144. | MR
[3] Kato T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967), 508- 520. | MR | Zbl
[4] Kenderov P. S.: Monotone operators in Asplund spaces. C.R. Acad. Bulgare Sci 30 (1977), 963-964. | MR | Zbl
[5] Kolomý J.: Maximal monotone and accretive multivalued mappings and structure of Banach spaces. Function spaces, Proc. Int. Conf. Poznań 1986, Teubner-Texte zur Math. 103 (1988), 170-177. | MR
[6] Kolomý J.: Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91 (1984), 202-204. | MR
[7] Preiss D., Zajíček L.: Stronger estimates of smallness of sets of Fréchet nondtfferentiability of convex functions. Proceedings of the 11-th Winter School, Supplement Rend. Circ. Mat. Palermo (Ser. II) (1984). | MR
[8] Zajíček L.: Sets of $\sigma $-porosity and sets of $\sigma $-porosity$(q)$. Čas. Pěst. Mat. 101 (1976), 350-359. | MR | Zbl