@article{CMUC_1989_30_1_a16,
author = {Kraj{\'\i}\v{c}ek, Jan},
title = {Speed-up for propositional {Frege} systems via generalizations of proofs},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {137--140},
year = {1989},
volume = {30},
number = {1},
mrnumber = {995712},
zbl = {0675.03034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a16/}
}
Krajíček, Jan. Speed-up for propositional Frege systems via generalizations of proofs. Commentationes Mathematicae Universitatis Carolinae, Tome 30 (1989) no. 1, pp. 137-140. http://geodesic.mathdoc.fr/item/CMUC_1989_30_1_a16/
[1] G. C. Cejtin A. A. Čubarjan: On some bounds to the lengths of logical proofs in classical propositional calculus. (Russian), Truudy Vyčisl. Centra AN ArmSSR i Erevan. univ. 8 (1975), 57-64. | MR
[2] S. A. Cook R. A. Reckhow: The relative efficiency of propositional proof systems. J. Symb. Logic 44 (1979), 36-50. | MR
[3] M. Dowd: Model-theoretic aspects of $P ≠ NP$. preprint (1985).
[4] W. F. Farmer: Length of proofs and unification theory. Ph.D. thesis, Univ. of Wisconsin-Madison, 1984.
[5] J. Krajíček: On the number of steps in proofs. to appear in Annals of Pure and Applied Logic. | MR
[6] J. Krajíček P. Pudlák: The number of proof lines and the size of proofs in first order logic. Archive for Mathematical Logic 27 (1988), 69-84. | MR
[7] J. Krajíček P. Pudlák: Propositional proof systems, the consistency of first order theories and the complexity of computations. to appear in J. Symbolic Logic. | MR
[8] R. Parikh: Some results on the length of proofs. Trans. Amer. Math. Soc. 117 (1973), 29-36. | MR | Zbl