Totally divergent dense sets in Cantor cubes
Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 4, pp. 711-713
@article{CMUC_1988_29_4_a10,
author = {van Mill, J.},
title = {Totally divergent dense sets in {Cantor} cubes},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {711--713},
year = {1988},
volume = {29},
number = {4},
mrnumber = {982790},
zbl = {0662.54002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_4_a10/}
}
van Mill, J. Totally divergent dense sets in Cantor cubes. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 4, pp. 711-713. http://geodesic.mathdoc.fr/item/CMUC_1988_29_4_a10/
[1] Hewitt E., K. A. Ross,: Abstract Harmonic Analysis I. Die Grundlehren der Mathematische Wissenschaften in Einzeldarstellungen (band 115), Springer, Berlin 1963.
[2] Juhász I.,: Cardinal functions in topology. MCT, No. 34. Mathematisch Centrum, Amsterdam, 1971. | MR
[3] Priestly W. M.,: A sequentially closed countable dense subset of $I^I$. Proc. Amer. Math. Soc. 24 (1970), 270-277. | MR
[4] Simon P.: Divergent sequences in compact Hausdorff spaces. Coll. Math. Soc. Janos Bolyai 23, Topology, Budapest (Hungary), 1978, pp. 1087-1094. | MR