Totally divergent dense sets in Cantor cubes
Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 4, pp. 711-713
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54A25
@article{CMUC_1988_29_4_a10,
     author = {van Mill, J.},
     title = {Totally divergent dense sets in {Cantor} cubes},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {711--713},
     year = {1988},
     volume = {29},
     number = {4},
     mrnumber = {982790},
     zbl = {0662.54002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_4_a10/}
}
TY  - JOUR
AU  - van Mill, J.
TI  - Totally divergent dense sets in Cantor cubes
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1988
SP  - 711
EP  - 713
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1988_29_4_a10/
LA  - en
ID  - CMUC_1988_29_4_a10
ER  - 
%0 Journal Article
%A van Mill, J.
%T Totally divergent dense sets in Cantor cubes
%J Commentationes Mathematicae Universitatis Carolinae
%D 1988
%P 711-713
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1988_29_4_a10/
%G en
%F CMUC_1988_29_4_a10
van Mill, J. Totally divergent dense sets in Cantor cubes. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 4, pp. 711-713. http://geodesic.mathdoc.fr/item/CMUC_1988_29_4_a10/

[1] Hewitt E., K. A. Ross,: Abstract Harmonic Analysis I. Die Grundlehren der Mathematische Wissenschaften in Einzeldarstellungen (band 115), Springer, Berlin 1963.

[2] Juhász I.,: Cardinal functions in topology. MCT, No. 34. Mathematisch Centrum, Amsterdam, 1971. | MR

[3] Priestly W. M.,: A sequentially closed countable dense subset of $I^I$. Proc. Amer. Math. Soc. 24 (1970), 270-277. | MR

[4] Simon P.: Divergent sequences in compact Hausdorff spaces. Coll. Math. Soc. Janos Bolyai 23, Topology, Budapest (Hungary), 1978, pp. 1087-1094. | MR