@article{CMUC_1988_29_3_a17,
author = {Sessa, Salvatore},
title = {Some remarks and applications of an extension of a lemma of {Ky} {Fan}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {567--575},
year = {1988},
volume = {29},
number = {3},
mrnumber = {972839},
zbl = {0674.47041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a17/}
}
Sessa, Salvatore. Some remarks and applications of an extension of a lemma of Ky Fan. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 3, pp. 567-575. http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a17/
[1] H. F. BOHNENBLUST S. KARLIN: On a theorem of Ville in: "Contributions to the Theory of Games". (H. W. KUHN and A. W TUCKER Eds.), Vol. I, Ann. of Math. Studies 24, Princeton Univ. Press (1950), 155-160. | MR
[2] F. E. BROWDER: The fixed point theory of multivalued mappings in topological vector spaces. Math. Ann. 177 (1968), 283-301. | MR
[3] F. E. BROWDER: On a sharpened form of the Schauder fixed point theorem. Proc. Nat. Acad. Sci. USA 74 (1977), 4749-4751. | MR | Zbl
[4] F. E. BROWDER: Coincidence theorems, minimax theorems and variational inequalities. Contemporary Math., Vol. 26, Amer. Math. Soc, Providence, R.I., (1984) 67-80. | MR | Zbl
[5] K. FAN: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. USA 38 (1952), 121-126. | MR | Zbl
[6] K. FAN: A generalization of Tychonoff's fixed point theorem. Math. Ann. 142 (1961), 305-310. | MR | Zbl
[7] K. FAN: A minimax inequality and applications, in: "Inequalities". (O. SHISHA Ed.), Vol. III, Academic Press, New York, London (1972), 103-113. | MR
[8] K. FAN: Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984), 519-537. | MR | Zbl
[9] I. L. GLICKSBERG: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170-174. | MR | Zbl
[10] C. W. HA: Minimax and fixed point theorems. Math. Ann. 248 (1980), 73-77. | MR | Zbl
[11] O. HADŽIĆ: Fixed point theory in topological vector spaces. Univ. of Novi Sad, Inst, of Math., Novi Sad, Yugoslavia (1984). | MR
[12] B. R. HALPERN G. M. BERGMAN: A fixed point theorem for inward and outward maps. Trans. Amer. Math. Soc. 130 (1968), 353-358. | MR
[13] C. J. HIMMELBERG: Fixed points for compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205-207. | MR
[14] B. KNASTER C. KURATOWSKI S. MAZURKIEWICZ: Ein Beweis des Fixpunktsatzes für n-dimensional Simplexe. Fund. Math. 14 (1929), 132-137.
[15] H. KOMIYA: Coincidence theorem and saddle point theorem. Proc. Amer. Math. Soc. 96 (1986), 599-602. | MR | Zbl
[16] T. C. LIN: Convex sets, fixed points, variational and minimax inequalities. Bull. Austral. Math. Soc. 34 (1986), 107-117. | MR | Zbl
[17] G. MEHTA: Fixed points, equilibria and maximal elements in linear topological spaces. Comm. Math. Univ. Carolinae 28 (2) (1987), 377-385. | MR | Zbl
[18] S. PARK: Fixed point theorems on compact convex sets in topological vector spaces. MSRI Report Series, N. 25 (1986). Abstract 87T-47-211 of Amer. Math. Soc, Vol. 8, no. 6, p. 445.
[19] J. B. PROLLA: Fixed point theorems for set-valued mappings and existence of best approximants. Numer.- Funct. Anal. Optimiz. 5 (4) (1982-83), 449-455. | MR
[20] E. TARAFDAR: On nonlinear variational inequalities. Proc. Amer. Math. Soc. 67 (1977), 95-98. | MR | Zbl
[21] E. TARAFDAR: Variational problems via a fixed point theorem. Indian J. Math. 28 (1986), 229-240. | MR | Zbl
[22] E. TARAFDAR: A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem. J. Math. Anal. Appl. 128 (1987), 475-479. | MR | Zbl