Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II
Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 3, pp. 403-410 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 32F45, 32H15, 46C05, 47H09, 47H10, 54E40
@article{CMUC_1988_29_3_a1,
     author = {Kuczumow, Tadeusz and Stachura, Adam},
     title = {Extensions of nonexpansive mappings in the {Hilbert} ball with the hyperbolic metric. {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {403--410},
     year = {1988},
     volume = {29},
     number = {3},
     mrnumber = {0972824},
     zbl = {0672.47036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a1/}
}
TY  - JOUR
AU  - Kuczumow, Tadeusz
AU  - Stachura, Adam
TI  - Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1988
SP  - 403
EP  - 410
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a1/
LA  - en
ID  - CMUC_1988_29_3_a1
ER  - 
%0 Journal Article
%A Kuczumow, Tadeusz
%A Stachura, Adam
%T Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II
%J Commentationes Mathematicae Universitatis Carolinae
%D 1988
%P 403-410
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a1/
%G en
%F CMUC_1988_29_3_a1
Kuczumow, Tadeusz; Stachura, Adam. Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 3, pp. 403-410. http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a1/

[1] T. FRANZONI E. VESENTINI: Holomorphic maps and invariant distances. North-Holland, Amsterdam, 1980. | MR

[2] A. GENEL J. LINDENSTRAUSS: An example concerning fixed points. Israel J. Math. 22 (1975), 81-85. | MR

[3] K. GOEBEL T. SĘK0WSKI A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis 4 (1980), 1011-1021. | MR

[4] K. GOEBEL W. A. KIRK: Iteration processes for nonexpansive mappings. Contemporary Mathematics 21 (1983), 115-123. | MR

[5] T. L. HAYDEN T. J. SUFFRIOGE: Biholomorphic maps in Hilbert space have a fixed point. Pacif. J. Math. 38 (1971), 419-422. | MR

[6] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Pubkten. Über. Deutsch. Math. Verein 32 (1923), 175-176.

[7] S. KOBAYASHI: Invariant distances for projective structures. Istituto Nazionale di Alta Matematica Francesco Severi, XXVI (1982), 153-161. | MR | Zbl

[8] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball. Colloq. Math., in print. | MR | Zbl

[9] T. KUCZUMOW A. STACHURA: Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. Part I. Comment. Math. Univ. Carolinae 29 (1988), 399-402. | MR

[10] S. REICH: Averaged mappings in the Hilbert ball. J. Math. Anal. Appl. 109(1985), 199-206. | MR | Zbl

[11] I. J. SCHOENBERG: On a theorem of Kirszbraun and Valentine. Amer. Math. Monthly 60 (1953), 620-622. | MR

[12] T. J. SUFFRIDGE: Common fixed points of commuting holomorphic mappings. The Michigan Math. 3. 21 (1975), 309-314. | MR