@article{CMUC_1988_29_3_a0,
author = {Kuczumow, Tadeusz and Stachura, Adam},
title = {Extensions of nonexpansive mappings in the {Hilbert} ball with the hyperbolic metric. {I}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {399--402},
year = {1988},
volume = {29},
number = {3},
mrnumber = {972824},
zbl = {0672.47035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a0/}
}
TY - JOUR AU - Kuczumow, Tadeusz AU - Stachura, Adam TI - Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. I JO - Commentationes Mathematicae Universitatis Carolinae PY - 1988 SP - 399 EP - 402 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a0/ LA - en ID - CMUC_1988_29_3_a0 ER -
%0 Journal Article %A Kuczumow, Tadeusz %A Stachura, Adam %T Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. I %J Commentationes Mathematicae Universitatis Carolinae %D 1988 %P 399-402 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a0/ %G en %F CMUC_1988_29_3_a0
Kuczumow, Tadeusz; Stachura, Adam. Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. I. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 3, pp. 399-402. http://geodesic.mathdoc.fr/item/CMUC_1988_29_3_a0/
[1] T. FRANZONI E. VESENTINI: Holomorphic maps and invariant distances. North-Holland, Amsterdam 1980. | MR
[2] K. GOEBEL: Uniform convexity of Caratheodory's metric on the Hilbert ball and its consequences. Istituto Nazionale di Alta Matematica Francesco Severi, Symposia Mathematica XXVI (1982), 163-179. | MR | Zbl
[3] K. GOEBEL T. SĘK0WSKI A. STACHURA: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis 4 (1980), 1011-1021. | MR
[4] E. HELLY: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. über. Deutsch. Math. Verein 32 (1923), 175-176.
[5] T. KUCZUMOW: Fixed points of holomorphic mappings in the Hilbert ball. Colloq. Math., in print. | MR | Zbl
[6] Z. OPIAL: Nonexpansive and monotone mappings in Banach spaces. Lecture Notes, Brown University, 1967.