Minimal bounded varieties
Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 2, pp. 261-265
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1988_29_2_a8,
author = {Je\v{z}ek, Jaroslav},
title = {Minimal bounded varieties},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {261--265},
year = {1988},
volume = {29},
number = {2},
mrnumber = {957394},
zbl = {0656.08005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a8/}
}
Ježek, Jaroslav. Minimal bounded varieties. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a8/
[1] T. EVANS: Products of points - some simple algebras and their identities. Amer. Math. Monthly 74 (1967), 362-372. | MR | Zbl
[2] J. JEŽEK G. F. McNULTY: Bounded and well-placed theories in the lattice of equational theories. (to appear). | MR
[3] M. SAADE: A comment on a paper by Evans. Zeitschr. f. math. Logik u. Grundl. d. Math. 15 (1969), 97-100. | MR | Zbl
[4] M. SAADE: Generating operations of point algebras. Journal Comb. Theory 11 (1971), 93-100. | MR | Zbl
[5] M. SAADE: A note on some varieties of point algebras. Czechoslovak Math. J. 29 (1979), 21-26. | MR | Zbl
[6] W. TAYLOR: The fine spectrum of a variety. Algebra Universalis 5 (1975), 263-303. | MR | Zbl