Remarks on the structure of tt-degrees based on constructive measure theory
Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 2, pp. 233-247 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03D25, 03D30, 03F65, 28A05
@article{CMUC_1988_29_2_a4,
     author = {Demuth, Osvald},
     title = {Remarks on the structure of tt-degrees based on constructive measure theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {233--247},
     year = {1988},
     volume = {29},
     number = {2},
     mrnumber = {957390},
     zbl = {0646.03039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/}
}
TY  - JOUR
AU  - Demuth, Osvald
TI  - Remarks on the structure of tt-degrees based on constructive measure theory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1988
SP  - 233
EP  - 247
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/
LA  - en
ID  - CMUC_1988_29_2_a4
ER  - 
%0 Journal Article
%A Demuth, Osvald
%T Remarks on the structure of tt-degrees based on constructive measure theory
%J Commentationes Mathematicae Universitatis Carolinae
%D 1988
%P 233-247
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/
%G en
%F CMUC_1988_29_2_a4
Demuth, Osvald. Remarks on the structure of tt-degrees based on constructive measure theory. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/

[1] HALMOS P. R.: Measure Theory. London, 1966.

[2] KUČERA A.: Measure,$\Pi_1^0$classes and complete extensions of PA. Lecture Notes in Math., vol. 1141, Springer-Verlag, Berlin 1985, 245-259. | MR

[3] KURTZ S. A.: Notions of weak genericity. J. Symbolic Logic 48 (1983), 764-770. | MR | Zbl

[4] LERMAN M.: Degrees of Unsolvability. Springer-Verlag, Berlin, 1983. | MR | Zbl

[5] ROGERS H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967. | MR | Zbl

[6] SACKS G. E.: Degrees of unsolvability. Annals of Mathematics Studies 55, Princeton University Press, Princeton, N.J., 1963. | MR | Zbl

[7] ŠANIN N. A.: Constructive Real Numbers and Function Spaces. Trudy Mat. Inst. Steklov 67 (1962), 15-294; English transl., Transl. Math. Monographs, vol. 21, Amer. Math. Soc., Providence, R.I., 1968. | MR

[8] ZASLAVSKIJ I. D.: Some properties of constructive real numbers and constructive functions. Trudy Mat. Inst. Steklov 67 (1962), 385-457; English transl., Amer. Math. Soc. Transl. (2) 57 (1966), 1-84. | MR | Zbl

[9] DEMUTH O.: On Lebesgue integration in constructive analysis. Thesis, Moscow State University, 1964 (Russian). | MR

[10] DEMUTH O.: The Lebesgue integral and the concept of function measurability in constructive mathematics. Docent Thesis, Charles University, Prague, 1967 (Russian).

[11] DEMUTH O., KUČERA A.: Remarks on constructive mathematical analysis. Logic Colloquium '78 (Boffa, van Dalen, McAloon ed.), North-Holland, Amsterdam, 81-129. | MR

[12] DEMUTH O.: The Lebesgue measurability of sets in constructive mathematics. Comment. Math. Univ. Carolinae 10 (1969), 463-492 (Russian). | MR

[13] DEMUTH O.: Constructive analogue of the connection between the Lebesgue measurability of sets and of functions. Comment. Math. Univ. Carolinae 14 (1973), 377-396 (Russian). | MR

[14] DEMUTH O.: The constructive analogue of the Denjoy-Young theorem on derived numbers. Comment. Math. Univ. Carolinae 17 (1976), 111-126. | MR

[15] DEMUTH O.: A constructive analogue of Garg's theorem on Dini derivatives. Comment. Math. Univ. Carolinae 21 (1980), 457-472 (Russian).

[16] DEMUTH O.: On some classes of arithmetical real numbers. Comment. Math. Univ. Carolinae 23 (1982), 453-465 (Russian). | MR | Zbl

[17] DEMUTH O.: On Borel types of some classes of arithmetical real numbers. Comment. Math. Univ. Carolinae 23 (1982), 593-606 (Russian). | MR

[18] DEMUTH O.: On arithmetical complexity of differentiation in constructive mathematics. Comment. Math. Univ. Carolinae 24 (1983), 301-316 (Russian). | MR

[19] DEMUTH O.: On pseudo-differentiability of pseudouniformly continuous constructive functions with respect to functions of the same type. Comment. Math. Univ. Carolinae 24 (1983), 391-406 (Russian). | MR

[20] DEMUTH O.: A notion of semigenericity. Comment. Math. Univ. Carolinae 28 (1987), 71-84. | MR | Zbl

[21] DEMUTH O., KUČERA A.: Remarks on 1-genericity, semigenericity and related concepts. Comment. Math. Univ. Carolinae 28 (1987), 85-94. | MR

[22] DEMUTH O.: Reducibilities of sets based on constructive functions of a real variable. Comment. Math. Univ. Carolinae 29 (1988), 143-156. | MR | Zbl