@article{CMUC_1988_29_2_a4,
author = {Demuth, Osvald},
title = {Remarks on the structure of tt-degrees based on constructive measure theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {233--247},
year = {1988},
volume = {29},
number = {2},
mrnumber = {957390},
zbl = {0646.03039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/}
}
TY - JOUR AU - Demuth, Osvald TI - Remarks on the structure of tt-degrees based on constructive measure theory JO - Commentationes Mathematicae Universitatis Carolinae PY - 1988 SP - 233 EP - 247 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/ LA - en ID - CMUC_1988_29_2_a4 ER -
Demuth, Osvald. Remarks on the structure of tt-degrees based on constructive measure theory. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/CMUC_1988_29_2_a4/
[1] HALMOS P. R.: Measure Theory. London, 1966.
[2] KUČERA A.: Measure,$\Pi_1^0$classes and complete extensions of PA. Lecture Notes in Math., vol. 1141, Springer-Verlag, Berlin 1985, 245-259. | MR
[3] KURTZ S. A.: Notions of weak genericity. J. Symbolic Logic 48 (1983), 764-770. | MR | Zbl
[4] LERMAN M.: Degrees of Unsolvability. Springer-Verlag, Berlin, 1983. | MR | Zbl
[5] ROGERS H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967. | MR | Zbl
[6] SACKS G. E.: Degrees of unsolvability. Annals of Mathematics Studies 55, Princeton University Press, Princeton, N.J., 1963. | MR | Zbl
[7] ŠANIN N. A.: Constructive Real Numbers and Function Spaces. Trudy Mat. Inst. Steklov 67 (1962), 15-294; English transl., Transl. Math. Monographs, vol. 21, Amer. Math. Soc., Providence, R.I., 1968. | MR
[8] ZASLAVSKIJ I. D.: Some properties of constructive real numbers and constructive functions. Trudy Mat. Inst. Steklov 67 (1962), 385-457; English transl., Amer. Math. Soc. Transl. (2) 57 (1966), 1-84. | MR | Zbl
[9] DEMUTH O.: On Lebesgue integration in constructive analysis. Thesis, Moscow State University, 1964 (Russian). | MR
[10] DEMUTH O.: The Lebesgue integral and the concept of function measurability in constructive mathematics. Docent Thesis, Charles University, Prague, 1967 (Russian).
[11] DEMUTH O., KUČERA A.: Remarks on constructive mathematical analysis. Logic Colloquium '78 (Boffa, van Dalen, McAloon ed.), North-Holland, Amsterdam, 81-129. | MR
[12] DEMUTH O.: The Lebesgue measurability of sets in constructive mathematics. Comment. Math. Univ. Carolinae 10 (1969), 463-492 (Russian). | MR
[13] DEMUTH O.: Constructive analogue of the connection between the Lebesgue measurability of sets and of functions. Comment. Math. Univ. Carolinae 14 (1973), 377-396 (Russian). | MR
[14] DEMUTH O.: The constructive analogue of the Denjoy-Young theorem on derived numbers. Comment. Math. Univ. Carolinae 17 (1976), 111-126. | MR
[15] DEMUTH O.: A constructive analogue of Garg's theorem on Dini derivatives. Comment. Math. Univ. Carolinae 21 (1980), 457-472 (Russian).
[16] DEMUTH O.: On some classes of arithmetical real numbers. Comment. Math. Univ. Carolinae 23 (1982), 453-465 (Russian). | MR | Zbl
[17] DEMUTH O.: On Borel types of some classes of arithmetical real numbers. Comment. Math. Univ. Carolinae 23 (1982), 593-606 (Russian). | MR
[18] DEMUTH O.: On arithmetical complexity of differentiation in constructive mathematics. Comment. Math. Univ. Carolinae 24 (1983), 301-316 (Russian). | MR
[19] DEMUTH O.: On pseudo-differentiability of pseudouniformly continuous constructive functions with respect to functions of the same type. Comment. Math. Univ. Carolinae 24 (1983), 391-406 (Russian). | MR
[20] DEMUTH O.: A notion of semigenericity. Comment. Math. Univ. Carolinae 28 (1987), 71-84. | MR | Zbl
[21] DEMUTH O., KUČERA A.: Remarks on 1-genericity, semigenericity and related concepts. Comment. Math. Univ. Carolinae 28 (1987), 85-94. | MR
[22] DEMUTH O.: Reducibilities of sets based on constructive functions of a real variable. Comment. Math. Univ. Carolinae 29 (1988), 143-156. | MR | Zbl