@article{CMUC_1988_29_1_a10,
author = {P{\l}uciennik, Ryszard and Wis{\l}a, Marek},
title = {Linear functionals on some non-locally convex generalized {Orlicz} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {103--116},
year = {1988},
volume = {29},
number = {1},
mrnumber = {937554},
zbl = {0647.46031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a10/}
}
TY - JOUR AU - Płuciennik, Ryszard AU - Wisła, Marek TI - Linear functionals on some non-locally convex generalized Orlicz spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1988 SP - 103 EP - 116 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a10/ LA - en ID - CMUC_1988_29_1_a10 ER -
%0 Journal Article %A Płuciennik, Ryszard %A Wisła, Marek %T Linear functionals on some non-locally convex generalized Orlicz spaces %J Commentationes Mathematicae Universitatis Carolinae %D 1988 %P 103-116 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a10/ %G en %F CMUC_1988_29_1_a10
Płuciennik, Ryszard; Wisła, Marek. Linear functionals on some non-locally convex generalized Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 1, pp. 103-116. http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a10/
[1] BANACH S.: Théorie des opérations linéaires. Warszawa: Monografie Matematyczne 1932. | Zbl
[2] CATER S.: Continuous linear functionals on certain topological vector spaces. Pacific J. Math. 13 (1963), 65-71. | MR | Zbl
[3] CHEN Shutao : On vector valued Orlicz spaces. Chin. Ann. Math. 5 B (1984), 293-304. | MR | Zbl
[4] DAY M. M.: The spaces $L^p$ with $0. Bull. Amer. Math. Soc. 46 (1940), 816-823. MR 0002700
[5] DREWNOWSKI L.: Compact operators on Musielak-Orlicz spaces. Ann. Soc. Math. Polon., Comment. Math, (to appear). | MR | Zbl
[6] GRAMSCH B.: Die Klasse metrischer linearer Raume $L_{\phi}$. Math. Ann. 171 (1967), 61-78. | MR
[7] HERNÁNDEZ F. L.: Continuous functionals on a class of Orlicz spaces. Houston 3. Math. 11 (1985), 171-181. | MR
[8] HERNÁNDEZ F. L.: A note on the Hahn-Banach approximation property in Orlicz spaces. Ann. Sc. Math. Quebec 9 (1985), 23-29. | MR
[9] HIMMELBERG C. J.: Measurable relations. Fund. Math. 87 (1975), 53-72. | MR | Zbl
[10] HUDZIK H., MUSIELAK J., URBAŃSKI R.: Linear operators in modular spaces. Ann. Soc Math. Polon., Comment. Math. 23 (1983), 33-40. | MR
[11] JAMISON J. E., LOOMIS I.: Isometries of Orlicz spaces of vector valued functions. Math. Z. 193 (1986), 363-371. | MR
[12] KOZEK A.: Orlicz spaces of functions with values in Banach spaces. Ann. Soc. Math. Polon., Comment. Math. 19 (1977), 259-288. | MR | Zbl
[13] MUSIELAK J.: Orlicz spaces and modular spaces. Lecture Notes in Math., Berlin - Heidelberg - New York - Tokyo: Springer 1983. | MR | Zbl
[14] MUSIELAK J., ORLICZ W.: On modular spaces. Studia Math. 18 (1959), 49-65. | MR | Zbl
[15] MUSIELAK J., ORLICZ W.: Some remarks on modular spaces. Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 7 (1959), 661-668. | MR | Zbl
[16] NAKANO H.: Generalized modular spaces. Studia Math. 31 (1968), 439-449. | MR | Zbl
[17] ORLICZ W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Polon. Sci., Sér. A 8 (1932), 207-220. | Zbl
[18] PALLASCHKE D., URBAŃSKI R.: On linear functionals in modular spaces over a field with valuation. Bull. Pol. Ac.: Math. 33 (1985), 25-30. | MR
[19] R0LEWICZ S.: Some remarks on the spaces N(L) and N(l). Studia Math. 18 (1959), 1-9.
[20] ROLEWICZ S.: Metric linear spaces. Warszawa: Polish Scientific Publishers 1984. | MR
[21] SKAFF M. S.: Vector valued Orlicz spaces generalized N-functions, I. Pacific J. Math. 28 (1969), 193-206. | MR | Zbl
[22] SKAFF M. S.: Vector valued Orlicz spaces, II. Pacific J. Math. 28 (1969), 413-430. | MR | Zbl
[23] TURPIN P.: Opérateurs linéaires entre espaces d'Orlicz non localement convexes. Studia Math. 46 (1973), 153-165. | MR | Zbl
[24J TURPIN P.: Convexités dans les espaces vectoriels topologiques généraux. Dissertationes Math. 131 (1976), 1-224. | MR
[25] WISŁA M.: Some remarks on Kozek Condition (B). Bull. Pol. Ac.: Math. 32 (1984), 407-415. | MR