On some convexities of Orlicz and Orlicz-Bochner spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 1, pp. 13-29
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46E30, 46E40
@article{CMUC_1988_29_1_a1,
     author = {Chen, S. and Hudzik, Henryk},
     title = {On some convexities of {Orlicz} and {Orlicz-Bochner} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {13--29},
     year = {1988},
     volume = {29},
     number = {1},
     mrnumber = {937545},
     zbl = {0647.46030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a1/}
}
TY  - JOUR
AU  - Chen, S.
AU  - Hudzik, Henryk
TI  - On some convexities of Orlicz and Orlicz-Bochner spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1988
SP  - 13
EP  - 29
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a1/
LA  - en
ID  - CMUC_1988_29_1_a1
ER  - 
%0 Journal Article
%A Chen, S.
%A Hudzik, Henryk
%T On some convexities of Orlicz and Orlicz-Bochner spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1988
%P 13-29
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a1/
%G en
%F CMUC_1988_29_1_a1
Chen, S.; Hudzik, Henryk. On some convexities of Orlicz and Orlicz-Bochner spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 29 (1988) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/CMUC_1988_29_1_a1/

[1] V. AKIMOVlČ: On uniformly convex and uniformly smooth Orlicz spaces. Teoria Funkcii Funk. Anal. i Eril. 15 (1970), 114-120 (in Russian).

[2] W. L. BYNUM: Normal structure coefficient for Banach spaces. Pacific J. Math. 86 (1980), 427-436. | MR

[3] A. A. GILLESPIE B. B. WILLIAMS: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure. Appl. Anal. 9 (1979), 121-124. | MR

[4] K. GOEBEL S. REICH: Uniform convexity, hyperbolic metric and nonexpansive mappings. Marcel Dekker, New York, Basel (1984). | MR

[5] R. GRZAÁLEWICZ H. HUDZIK W. ORLICZ: Uniform non-$l_n^(1)$ property in some normed spaces. Bull. Acad. Polon. Sci. Math. 34 (1986), 161-171. | MR

[6] H. HUDZIK: Uniformly $non_n^(1)$ Orlicz spaces. Studia Math. 81 (3) (1985), 271-284. | MR

[7] H. HUDZIK: Convexity in Musielak-Orlicz spaces. Hokkaido Math. J. 14 (1) (1985), 85-96. | MR | Zbl

[8] H. HUDZIK: Locally uniformly non-$l_n^(1)$ Orlicz spaces. Rendiconti del Circolo Math, di Palermo, Proceedings of the Winter School on Abstract Analysis, Srní 1985.

[9] H. HUDZIK: Flat Musielak-Orlicz spaces with Luxemburg's norm. Bull. Acad. Polon. Sci. Math. 32 (1984), 203-208. | MR

[10] H. HUDZIK A. KAMINSKA: On uniformly convexifiable and B-convex Musielak-Orlicz spaces. Commentationes Math. 2 5 (1985), 59-75. | MR

[11] R. C. JAMES: Uniformly non-square Banach spaces. Annals of Math. 80 (1964), 542-550. | MR | Zbl

[12] A. KAMIŃSKA: On uniform convexity of Orlicz spaces. Todagationes Math. 80 (1964), 542-550.

[13] A. KAMIŃSKA B. TURETT: Uniformly non-$l_n^(1)$ Orlicz-Bochner spaces. Bull. Acad. Polon. Sci. Math, to appear.

[14] M. A. KRASNOSELSKII, Ya. B. RUTICKII: Convex functions and Orlicz spaces. (translation), Groningen 1961.

[15] T. LANDES: Permanence properties of normal structure. Pacific J. Math. 110 (1) (1984), 125-144. | MR | Zbl

[16] W. A. J. LUXEMBURG: Banach function spaces. Thesis, Delft 1955. | MR | Zbl

[17] H. W. MILNES: Convexity of Orlicz spaces. Pacific J. Math. 7 (1957), 1451-1486. | MR | Zbl

[18] J. MUSIELAK: Orlicz spaces and modular spaces. Lecture Notes in Math. 1034 (1983). | MR | Zbl

[19] J. J. SCHÄFFER: Geometry of spheres in normed spaces. Lecture Notes in Math. 20 (1976). | MR

[20] CHEN SHUTAO: Nonsquareness of Orlicz spaces. Chinese Anal. Math. 6 A (5) (1985), 619-624. | MR

[21] K. SUNDARESAN: On the strict and uniform convexity of certain Banach spaces. Pacific J. Math. 15 (1965), 1083-1086. | MR | Zbl

[22] WANG YUWEN, CHEN SHUTAO: Non-squareness, B-convexity and flatness of Orlicz spaces with Orlicz norm. Commentationes Math., to appear.