Everywhere regularity theorems for mappings which minimize $p$-energy
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 4, pp. 673-677 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35D10, 58E20
@article{CMUC_1987_28_4_a9,
     author = {Fuchs, Martin},
     title = {Everywhere regularity theorems for mappings which minimize $p$-energy},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {673--677},
     year = {1987},
     volume = {28},
     number = {4},
     mrnumber = {928682},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a9/}
}
TY  - JOUR
AU  - Fuchs, Martin
TI  - Everywhere regularity theorems for mappings which minimize $p$-energy
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 673
EP  - 677
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a9/
LA  - en
ID  - CMUC_1987_28_4_a9
ER  - 
%0 Journal Article
%A Fuchs, Martin
%T Everywhere regularity theorems for mappings which minimize $p$-energy
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 673-677
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a9/
%G en
%F CMUC_1987_28_4_a9
Fuchs, Martin. Everywhere regularity theorems for mappings which minimize $p$-energy. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 4, pp. 673-677. http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a9/

[F1] M. FUCHS: p-harmonische Hindernisprobleme, Habilitationsschrift. Universität Düsseldorf 1987.

[F2] M. FUCHS: p-harmonic obstacle problems. Part I, II, to appear in Ann. S.N.S. Pisa. | Zbl

[F3] M. FUCHS: A note on removable singularities for minima of certain vector valued obstacle problems. Archiv d. Math., in press. | Zbl

[F4] M. FUCHS: A regularity theorem for energy minimizing maps of Riemannian manifolds. Comm. P.D.E., in press. | Zbl

[F,F] M. FUCHS N. FUSCO: Partial regularity results for vector valued functions which minimize certain functionals having nonquadratic growth under smooth side conditions. Preprint n. 46, University of Naples 1986. | MR

[H] S. HILDEBRANDT: Harmonic mappings of Riemannian manifolds. Springer Lecture Notes in Mathematics 1161, 1985. | MR | Zbl